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ABSTRACT  The ‘Cambrian explosion’, about 540 million years ago, may have occurred within 10

to 50 million years. Almost all of the modern phyla, a very restricted group and many groups that

may represent extinct phyla, suddenly appear near that time in the fossil record. Numerous

extensive periods of mass extinction since that time led to no new phyla. This is taken as an

impetus to examine a possible source, beyond Darwinian adaptation, of the apparently restricted

number of phyla. Such a postulated constraint or restriction beyond adaptation is proposed to be

based on a mutation or mutations allowing single celled or colonial precursors to begin forming

into epithelial sheets and gene activation patterns of a particular kind, those giving rise to the very

earliest metazoans. The interaction of signaling pathways in pairs, with different pairs acting

sequentially are proposed as key to this earliest patterning, such patterning being extensively

elaborated over the last ∼ 550 million years. Restrictions on the very large set of possible forms

and patterns on which adaptation acts are discussed.
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Introduction

The extraordinary and rapid diversification of higher taxa in the
Cambrian or Precambrian fossil record is one of the most stunning
events in the history of evolution, one prompting much debate.
Questions include why such fundamentally different body plans
evolve in such great profusion early in evolutionary history, but
very little if at all thereafter. The mass extinctions that occurred
since the Cambrian might be expected to have provided a partial
predator vacuum, allowing evolution to experiment with different
body types. Another question is why such great changes evolved
in so short a time (if in fact they did so), after billions of years of
single-cell dominance (Futuyma, 1998).

Many studies have emphasized the contrast between the
diversity of cellular behaviors and the unity of the underlying
molecular mechanisms. All eukaryotic cells have inherited core
mechanisms or modules and these core mechanisms have ap-
peared in highly effective form very early in the evolution of
eukaryotes. Many or even most of these modules are involved in
crucial cellular ‘housekeeping’ chores, such as metabolism. Oth-
ers are involved in signaling pathways, some presumably existing
even before the advent of multicellularity approximately 560M
years ago (Gordon, 1999; Schlosser and Wagner, 2004).

Great progress has been achieved in recent years in unravel-
ing the genetic basis of many of these core mechanisms. Our
understanding is only at the most rudimentary stage concerning
how this vast store of genetic information becomes converted into
complex cellular determinations and specific organ shapes, such
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as an embryo. The aim of the present paper is to outline, certainly
in a most elemental and incomplete manner, a possible path from
gene to most primitive organism. Continued evolution has been
made possible because evolution has proceeded by modifying
the later stages of development of individual modules, one at a
time, while leaving the initial arrangement of these modules
unchanged. Focus here is on the very earliest stage of multicel-
lular development, diploblastic and triploblastic animal origins,
when certain modules became more or less unchangeable.

The paper can be viewed as consisting of two main parts. The
first will develop a new patterning mechanism, one based on the
interaction of two signaling pathways. Patterning implies a mecha-
nism instructing genes to behave differently in different spatial
areas. The signaling pathways responsible for patterns will be
viewed as interacting in pairs, with different pairs acting sequen-
tially in time to produce morphogenetic patterns. The patterns
obtained by the present model are sufficiently complex to mimic,
for example, animal coat patterns (Murray, 1990), or the observed
phyllotactic patterns on a plant stem (Cummings and Strickland,
1998). The term ‘morphogenetic’ pattern is to be stressed be-
cause the shape determination implied by ‘morph’ goes hand in
hand with the pattern determination of a given region of epithelial
surface. Shape is important; there are no flat animals. All shape
changes are here restricted to epithelial cell sheets. The ‘pattern’
part will be discussed first and viewed (unrealistically) as if such
patterns could occur on (e.g.) a fixed sphere of epithelial cells.

Secondly it will be argued that shape change is necessarily
coupled to pattern. The two processes, pattern and shape, are
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then inextricably and necessarily tied together, as in the present
model. Pattern determines shape and shape in turn determines
pattern, during a continuous process of growth.

The simplest case of ‘proto-gastrulation’, or invagination start-
ing from a spherical blastula will be discussed in this context,
illustrating the most natural outcome of the simplest two-part
pattern, such as may be imagined to occur near the dawn of
multicellulars. The focus is on the particular handful of signaling
pathways known to be involved in the crucial embryonic pro-
cesses of genetic determination, such as changes of cellular
architecture, control of adhesion, cell division and apoptosis. The
well-studied Wnt pathway in conjunction with several other growth
pathways, such as Hedgehog (Hh), BMP, TGF and Notch are
prime candidates in this respect (Cummings, 2004).

Plausibility arguments are presented for the possible origin of
the radial periodicity of earliest cnidaria-like animals, providing
initial deviation from the simplest example of axial symmetry. In
this first case considered of deviation from axial symmetry, the
topology is that of a sphere or gastrula. A second case considers
change in basic topology from sphere to ‘donut’ and suggests an
origin of segmentation and bilaterality in the earliest bilaterally
symmetric through-gut worm-like animal.

The pattern

The four variables representing the two patterning pathway
molecules are two (free) ligand densities (number/area) L1 , L2
and the two corresponding activated or occupied receptor densi-
ties R1, R2. The R’s include the receptor (e.g., Frizzled in the case
of Wnt ligand) together with its bound ligand, or may indicate
simply activation of the particular pathway. The free ligand den-
sities are assumed to satisfy the usual diffusion equation in the
absence of receptors. However, the binding of a ligand of a given
type (L1 or L2) to its receptor will affect the rate of change of both
of the two ligand densities.

The usual discussion of signaling pathways begins by assum-
ing that there has been an activation of the receptor by its ligand.
Then experimental study traces the cellular dynamics of the
various downstream molecules and genetic activations beyond
this point. There is most often less discussion of the origin of the
activating ligand, i.e., asking for its place or cell of origin, or why
it was secreted from any distant or neighboring cell at any
particular time. Four answers to such a question jump to mind.
Perhaps the ligand captured by a receptor on a given cell was
emitted (secreted) at random times from neighboring cells, or
perhaps was emitted at a constant rate. These two possibilities
are rejected here. Then there is the possibility that the captured
ligand was emitted earlier by neighboring cells at times dictated
by some internal cellular clock. While this latter is a possibility, an
alternate picture is assumed here, namely that the ligand was
secreted by a given cell because it was stimulated to do so
because of activation of a receptor on that cell by a like ligand.

The key assumption of the present patterning mechanism is
the assumption that when a ligand activates its receptor it will
stimulate the secretion of like ligand at the same time that it
suppresses secretion of ligand of a second (and thus coupled)
signaling pathway. This will occur in a reciprocal way between
pathways ‘1’ and ‘2’. The ‘morphogens’, hereafter referring to the
activated receptor densities R1 and R2, are then transmitted over

many cellular diameters. The stimulation of secretion of like ligand
into the extracellular medium upon activation of its receptor, at the
same time as inducing suppression of secretion of ligand of the
‘other’ ligand type, is a prediction of the model. Since this pattern-
ing process is assumed to be significantly faster than processes
that proceed via the nucleus, this provides a picture of a two-part
process, first of all leading to a “prepattern”, occurring well before
cellular determination and shape changes.

The ‘G’ proteins accompanying the individual pathways most
likely are involved in such ‘on-off’ switching. It will further be
supposed that such stimulated emission of secreted ligand (or
perhaps, ligand precursor) happens on a time scale that is
relatively short compared to the time for transcription and trans-
lation, i.e., gene activation and subsequent protein production.
Thus the pattern will be expected to be formed some time interval
before cellular determination occurs. Then the oft noted “pre-
pattern”, the pattern preceding cell determination and cell shape
changes in time, is a built-in feature of the model. This implies that
ligand or its precursor has been already ‘packaged’ beforehand
and stored in the cytoplasm, providing for rapid secretion into the
extracellular space upon receptor activation. This is reminiscent
(but only in this restricted sense) of stimulated secretion from
neurosecretory cells. Since such stimulated secretion of ligand
has not been established, the model suggests such experimental
investigations and the validity of the model depends on the
outcome. It is relevant to note, however, in the case of the Wnt
pathway that at least one branch (‘non-canonical’) bypasses the
nucleus.

In appendix A eqns. (A.1) and (A.2) show two equations for the
time rate of change of two ligands, L1 and L2. The (linear) effect of
both the positive and negative feedbacks described above are
modeled by the second and third terms on the right hand side (r/
h/s). All parameters of the model are positive. The inevitable
nonlinear terms are indicated by “N.L.”. These N.L. terms are
presumed to give saturation effects and may be modeled in
various ways. The ‘difference’ (R1-(β/α)•R2) between the two
activated receptor densities, where β/α is a parameter, plays a
key role.

Equations for the rate of change of receptor activation densi-
ties R1 and R2 are shown in Appendix A by eqns. (A.3) and (A.4).
The receptors are assumed to be relatively fixed in the plasma
membrane of the cells and an average is assumed to include a
small number of cells (∼10) of like activation in order to be able to
use the concept of ‘densities’ (number/area). These rates of
change of activated receptor density are proportional to (c.f. the
first terms on the r/h/s of eqns. (A.3) and (A.4)) the product of the
ligand density at the receptor site times the number of unoccupied
receptor sites available. The second term on the r/h/s of eqns.
(A.3) and (A.4) models most simply the decay in time (with rates
µ and ν) of the active sites, when the receptors either resume
unoccupied status, or are otherwise rendered inactive.

There are several points distinguishing this pattern mecha-
nism from a class of previous ones with which it shares some
similarities (Turing 1952; Koch & Meinhardt 1997; Meinhardt,
1982). It can be shown that in the present model spontaneous
activation occurs from zero activation level of the L’s and R’s.
Pattern activation does not depend on the presence of
nonlinearities (which, however, inevitably occur in any model
including the present). A linear analysis of the model (i.e., drop-
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ping the “N.L.” terms and replacing the unoccupied densities by
a constant in Appendix A) already gives spontaneous pattern
formation, provided that a certain reasonable criterion is met for
a combination of the parameters of the model (Cummings, 2004).
Another difference from earlier models is that there is no need to
require disparate diffusion rates to achieve patterning; the diffu-
sion rates can for example be equal, or e.g., both small. Perhaps
most importantly, the present model is conceptually based on
coupled signaling pathways, those pathways known to be in-
volved in embryonic patterning. Only minimal details mentioned
above of the molecular dynamics of the pathways are needed to
establish pattern.

The model is put forward mainly to illustrate that very simple
and reasonable assumptions about coupling of two signaling
pathways lead to complex patterns. It is fairly clear how further
complexities and refinements can be added, but the main point to
be made is that such a combination of positive and negative
feedback will lead to patterns very like those often invoked in the
past to model living systems (e.g., Murray, 1990). It is worth noting
that the time independent small amplitude version of the equa-
tions (A.1)-(A.4) are the same as those used by Murray (1981) to
mimic animal coat patterns. Cummings and Strickland (1998)
show how they also lead to the most prominent of the phyllotactic
plant patterns.

An example of a time independent (∂/∂t = 0) numerical solu-
tions of the present model on a fixed geometry is shown in Fig. 1.
Here the solution is shown in axial-symmetry on a cylinder of
length ‘L’. The form of the ‘N.L.’ (nonlinear) term of eqns. (A.1) and
(A.2) is taken as of the Hill form in calculation of the figure, as well
as all subsequent figures. The explicit form of ‘N.L.’ used is given

in Appendix A. Further discussion of numerical solutions will be
given in a later section, when pattern is coupled to geometrical
deformations.

Figure 1 is favorably viewed in the context of recent results.
Larsen et al. (2003) have found that in the developing Drosophila
embryo, the epidermis becomes transiently divided into a series
of segments, each with a deep groove that marks an anterior and
posterior edge. Analysis of mutants indicates that groove forma-
tion requires the transcription factor Engrailed and the morpho-
gens Hedgehog and Wingless. Hedgehog signaling is required
posterior to the boundary but is repressed by Wingless anteriorly
in order to prevent a boundary from forming on the wrong side of
Engrailed expressing cells. Prud’homme et al. (2003) have found
that Engrailed and Wingless are also expressed in epidermal cells
on opposite sides of boundaries defining morphologically similar
segments during the development of a primitive annelid, a differ-
ent phyla. These two authors are pointing to molecular and
morphological similarities suggesting a segmental unit body plan
which may have evolved from a common ancestor.

Coupling pattern to geometry

This paper is also part of a continuing effort to develop
mathematical modeling of shape changes of epithelial sheets.
Interest is also on a theoretical understanding of the possible
origin of phyla (Valentine, 2004), to which this present work
aspires to be a modest, albeit unique, contribution. The emphasis
here is on developmental constraints; the existence of a finite
universe of possible basic body plans sets the stage for subse-
quent winnowing by adaptation (Maynard Smith et al., 1985).

 When any cell changes shape or size, it affects and is affected
by neighboring cells. Use of the term ‘cell’ here describes rather
the average over a small group of biological cells, since it is
usually not feasible to follow the complicated gyrations of a single
cell as it changes shape and slides around its neighbors in the
epithelial sheet. We think rather of taking an average over a small
(∼5-10) subset of cells in all that follows.

Change of shape of the epithelial sheet is most economically
described by embedding a coordinate system on the middle
surface bisecting the sheet of (in general, variable) thickness ‘h’.
Thus, any change in local cell shape or size is accompanied by a
change in the geometry of the embedded coordinate system.
(Here we use the convention that patterns ‘belong’ to the animal,
while coordinates are the free choice of the observer). This
provides a model allowing a direct and straightforward represen-
tation of the influence of pattern on surface and also of surface on
pattern. The local apical and basal areas and cell heights at each
point on the surface are the three relevant parameters for describ-
ing the surface (Cummings, 2001, 2005). The pattern guiding this
curved (middle) surface is thought of as provided by coupling of
two signaling pathways, as described in the last section.

There are a number of interesting previous efforts to describe
epithelial shape changes. Four examples are Jacobson et al.
(1986), Green and Baxter (1987), Spirov (1993) and Beloussov
(2003), These studies differ from the present in that (e.g.) they do
not embed a coordinate system in the animal epithelial surface.

A biological pattern mechanism implies geometry. Equations
(A.1) and (A.2) contain the ‘Laplacian’ operator. This operator
contains much of the geometrical information. The Laplacian is

Fig. 1. Numerical solution on a cylinder. The figure shows a sample
numerical integration of the nonlinear equations of Appendix A. Here the
terms “NL” in eqns. (A.1) and (A.2) are modeled by letting the expression
((R1- (β/α)•R2 ) + NL) of eqns. (A.1) and (A.2) be replaced by the form (R1-
(β/α)•R2 ) / (1+((R1- (β/α)•R2 ) /c)2 ) as in all subsequent simulations. Other
models are clearly possible and the shape of the invaginations of Fig. 5
will be correspondingly altered. The numerical calculations are axially
symmetric and represent the pattern on a fixed cylinder; there is no
coupling to geometry in this single figure. As explained in the text, the
regions where the two curves intersect, where R1≈ (β/α)•R2 represent
small coordinate intervals ‘∆u’ where the morphogens R1, R2 do not act
to differentiate the underlying tissue. Any such regions where no domi-
nation by either morphogen exists is proposed as a ‘stem cell’ region.
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often called the ‘Beltrami’ operator when it is to be taken on a
curved surface as at present. It contains the surface metric
coefficients, crucial in describing a curved surface.

For simplicity, but without loss of generality, coordinates will
always be drawn on a surface so that every surface is covered by
a network of (very) small squares, with such squares varying in

size over the surface. Only on a flat surface may the small squares
be taken as all equal in size. The surface being referred to will be
the middle surface bisecting an epithelial sheet of (in general)
varying thickness. Appendix B discusses several aspects of
geometry on a curved surface applicable to the present discus-
sion. See also Cummings (2001, 2004, 2005) for a more detailed
discussion.

In these special orthogonal ‘conformal’ coordinates (u, v) the
Laplacian takes the form

 ∇ = ∂ ∂ + ∂ ∂2
2 2 2 2/ /

( , )

u v

g u v . (3.1)

The area of each small square on the surface is given by dA =
g(u,v)•du•dv and g(u,v) always has dimensions of area.

Now it is apparent that the model of eqns. (A.1)-(A.4) is not
closed or determined until an equation is given for the geometry
factor (or ‘metric’ function) ‘g(u,v)’ which always appears in the
Laplacian. Gauss and others have given such an equation as the
highly nonlinear second order differential equation

∇ = − ⋅2 2log( )g K  (3.2)

The Gauss curvature ‘K’ and the Mean curvature ‘H’ are both
required in order to specify a surface. These two quantities are
now to be considered functions of the ‘morphogens’ R1,2 and their
derivatives and particular model forms are discussed in Appendix
B. When such functional relationships are given (Cummings,
2004, 2005) this closes the set of slowly varying “time-indepen-
dent” eqns., namely eqns. (A.1) - (A.4) (with ∂/∂t = 0) when
combined with eqn. (3.2). These together constitute three sec-
ond-order nonlinear differential equations and must clearly be
solved numerically.

Emphasis should be put on the important point that there are
two time scales considered. The first, the ‘fast’ time scale, in-
cludes the biochemical reaction rates and thus includes the ∂/∂t
terms on the l/h/s of eqns. (A.1) and (A.2). Slower interactions,
such as transcription factor/gene, Golgi and endoplasmic reticu-
lum interactions, or those involving cell division and growth, are
not included in the ‘fast’ time regime. Including such (∂/∂t) terms
in eqns. (A.1) and (A.2) allows one to infer that the model gives
spontaneous pattern activation from a zero level of morphogen
(Cummings, 2004). When we exclude these two ‘∂/∂t’ terms, the
‘time independent’ version implies a slower time dependence
governed by the overall rate of growth. These slower processes
involve transcription and translation, growth and cell shape
changes. This second and slower rate of change is parameterized
in the present model simply as a change in time of the total surface
area A(t). As noted below eqn. (3.1) or in Appendix B, this
parameter A is given by an integral over every small square of the
(middle) surface, that is

A t dA g u v dudv( ) ( , )= =∫ ∫∫ (3.3)

The parameter ‘A’ is put in ‘by hand’ in present numerical
simulations as an increasing quantity and the model determines
the region of growth implicitly.

Fig. 2. Surface invagination showing stem cell region. (A) Two
morphogens R1 and R2 as a function of the coordinate ‘u’ for axially
symmetric geometry. Coupling of morphogens to geometry as described
in the text and Appendix B leads to an invaginated sphere and an example
is shown in (B). Here the figure corresponds to a total area of A = 7Ao,
where Ao is the threshold sphere (or blastula) area below which the
morphogen densities are zero. The figure is meant to illustrate the
proposed region of stem cells. If a threshold is specified (taken as the
same for both morphogens here), shown by the horizontal dashed line in
(A), then there is a coordinate region ‘∆u’ (hatched) between u1 and u2
where neither morphogen dominates and differentiation is prevented. To
the left of u1 one morphogen (R1) dominates, while on the right side of u2
the morphogen R2 dominates. (B) The corresponding postulated stem
cell region as an annulus near the blastopore lip is shown as ‘hatched’.
The arrow indicates a circle where the Gauss curvature is zero, after
which it becomes negative with increasing coordinate u’.

A

B
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It must be clear that the morphogens (the R’s) do not act
directly to affect the cell shapes, or surface curvatures. Rather, it
is imagined that they set in motion through the signaling pathway
the downstream processes of transcription, translation and the
subsequent production of several proteins that affect the cell
shapes in the small area being averaged over. The model is then
saying that these cellular deformations are functions of, or per-
haps proportional to, the morphogen densities. There are at least
three such protein factors, the three required to determine local
apical and basal surface areas and cell heights (Cummings,
2001). Generally the local variation in cell heights will be important
in determining the shape of epithelial surfaces, but such effects
are not pursued in the present simple expository model.

Figures 3, 4 and 5 show, respectively, the numerically calcu-
lated morphogen densities, the corresponding Gauss and Mean
curvatures and the corresponding axially symmetric surface in-
vaginations (termed ‘gastrulation’ here). In each figure, three
curves are shown, for the total areas A = 1.5Ao, A = 1.7Ao and A
= 1.9Ao. The critical area Ao = 4πRo

2 is the minimum sphere area
where the morphogens may first become nonzero, where (kRo)2

= 2. It is emphasized that the Gauss curvature K must become
negative for invagination to occur (Cummings, 2004).

Figure 6 shows the normalized metric function G ≡ g(u)/A as a
function of the coordinate ‘u’, for the corresponding Figs. 3–5. The
metric function for the area A = 1.7Ao is compared with the same
function for the sphere, where g/A=2/cosh2(u).

 This section closes by noting a further prediction of the present
model. Shape changes of necessity change the spatial distribu-
tion of the morphogen densities, as implied by the ubiquitous
presence of the Laplacian in the pattern generator. The active
receptor sites, represented by the R’s, are coupled downstream

via the various molecules of the pathway to transcription factors
in the nucleus. Thus we expect that an artificial spatial distortion
during embryonic development, perhaps a squeezing under pres-
sure, can change transcription in regions of an otherwise normally
developing embryo. A change in phenotypic outcome is expected
under such circumstances.

Observations on actual signaling pathways

Here are reviewed some recent findings to suggest elements
of two different signaling pathways as prime candidates that may
be best represented by the symbols of the model. Much evidence
suggests that one symbol pair of the model (say, L1, R1) will often
be represented by the ‘Wnt’ (wingless, ‘Wg’, in the fly) pathway.
It is suggested that the Wnt pathway is coupled to any one of a
number of possible other candidates. One example is the interac-
tion between Wnt and Vg1 signaling pathways initiating primitive
streak formation in early chick embryos, while a second is that
between Wnt (Wingless (Wg) in the fly) and Hedgehog, affecting
segmentation in Drosophila (Gerhart and Kirschner, 2001; Larsen
et al., 2003; Prudhomme et al., 2003). Larsen et al. (2003) and
Prud’homme et al. (2003) were already mentioned in the last
paragraph of the section entitled "The pattern". Wikramanayake
et al. (2003) have indicated an evolutionary ancient role for Wnt
signaling and β-catenin in early pattern formation. Yet another
example is the combination of a dorsal signal provided by the
BMP4 homologue Decapentaplegic (Dpp) with a ventral signal
provided by the Wnt homologue Wingless (Wg) establishing the
PD (proximal-distal) axis, in addition to organizing the dorsal-
ventral appendage pattern (Galindo et al., 2002). Evidence from
other arthropods and vertebrates suggest that this PD patterning
mechanism is probably conserved and ancestral. Epithelial bud
development is due to the combined action of Wnt and BMP (bone

Fig. 3. Morphogen change with total area. Figures 3, 4 and 5 each
show the coupling of pattern to form in axi-symmetry for three different
total areas A. Figure 3 shows the two morphogens R1 and R2 as a function
of coordinate ‘u’. In Figs. 3 and 4, the solid line corresponds to a total area
A = 1.5Ao, the circles to A = 1.7 Ao and the pluses to A = 1.9 Ao. Here Ao
is the threshold total sphere or blastula radius below which no morpho-
gen solution can exist. The maximum morphogen amplitudes increase
with increasing A.

Fig. 4. Gauss and mean curvatures. Gauss (K) and Mean (H) curvatures
for the largest total area, A=1.9Ao. The Mean curvature is monotonic as
a function of ‘u’ for all areas, while the Gauss curvature goes negative at
the cusp of the blastopore lip (see Fig. 2). The negative region of Gauss
curvature is a necessary occurrence in order to achieve invagination and
the value of the Gauss-Bonnet integral from this circle over the invagi-
nated surface region must be zero. At both ends of the coordinate
interval, K = H2, as required. The area factor Ao = 4πRo

2 has been used
in normalization of all calculations, where (kRo)

2 = 2.
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morphogenetic protein) signaling pathways. In this case, the β-
catenin activated Lef1 transcription complex is combined with the
‘noggin’ inhibition of BMP signaling, leading to reduced produc-
tion of the adhesion protein E-cadherin, the latter mediating cell-
cell contacts (Jamora, 2003; Perez-Moreno, Jamora and Fuchs,
2003). Another most interesting example of Wnt signaling (and
Wnt6 in particular) is that given by Bonner-Fraser and colleagues
(Garcia-Castro, Marcelle and Bonner-Fraser, 2002). Neural crest
cells are a pleuripotent, migratory population of cells that differen-
tiate into an enormous array of cell types, tissues and organs in
vertebrates. Wnt6 is both necessary and sufficient for instructing
neural crest formation in the chick embryo. The present model
suggests that it will turn out that a synergy between BMP and Wnt
is required for neural crest formation. A further example is the
coupling of Wnt to the Notch pathway, as often occurs in animal
segmentation.

A molecular oscillator underlies vertebrate segmentation and
involves the interaction of Wnt with the Notch pathway (Purnell,
2003; Pourquie, 2003). Apparently the Notch pathway lies at the
heart of the vertebrate oscillator, although there has been one
cycling Wnt gene uncovered also, namely the Wnt inhibitor gene
axin2. Notch is not involved in Drosophila segmentation, although
it is involved in other arthropods. This suggests that vertebrates
and arthropods may have shared a common ancestral segmen-
tation program with Wnt/Notch signaling at the core and parts of
this program was lost in particular descendant lineages such as
Drosophila (Stollewerk, Schoppmeir and Damen, 2003).

It also seems possible that, besides the possibilities mentioned
just above, there may be more than one version of the Wnt ligand
protein (and receptor), since Wnt ligand is known to associate with
lipids and become hydrophobic. Then it may be possibly think of
‘Wnt1’ and ‘Wnt2’ in this case as the two ligands of the model

(Willert et al., 2003).
To use a mechanical analogy, the Wnt pathway seems to act

as a sort of permissive gate, perhaps a sort of ‘main drive shaft’
off of which other ‘shafts’ are driven or interact. The ‘Wnt’ pathway
may often be looked on as a sort of primal pathway, participating
along with a handful of other pathways (e.g., Hedgehog, BMP,
TGF, EGF and Notch in early development of an organism
(Cooper, 1997; Gerhart and Kirschner, 2001). Cell signaling via
the Wnt ‘Frizzled’ receptor has evolved to considerable complex-
ity within the metazoans. The Frizzled–dependent signaling cas-
cade comprises several branches, whose differential activation
depends on specific Wnt ligands, Frizzled receptor isoforms as
well as the cellular context (Wodarz and Nusse, 1998; Tetsu and
McCormick, 1999; Niehrs, 2001; Taipale and Beachy, 2001;
Moon and Shaw, 2002; Nelson and Nusse, 2004). For example,
in Xenopus laevis embryos, the canonical β-catenin pathway
contributes in a crucial way to the establishment of the dorsal-
ventral axis, involving interaction between the Wnt/β-catenin
‘canonical’ branch and a Wnt/Ca2+ branch. Mutations in the
protein APC, a key regulator in the Wnt pathway, (Peifer, 1996)
leads to accumulation of β-catenin, which in turn activates genes
which respond to transcription factors of the TCF/LEF family, with
which β-catenin interacts (Tetsu and McCormick, 1999).

Members of the large Wnt family of proteins control many
developmental processes, including a pathway involving cell
adhesion (Niehrs, 2001). This pathway is a crucial factor in
construction of the colon (Peifer, 2002). Of interest from the
present point of view of the model is the non-canonical ‘fast’
pathway, in contrast to the one that goes through the nucleus, this
‘fast’ pathway bypassing the nucleus altogether.

Signaling pathways are accompanied with their modulating ‘G’
proteins (GTP and GDP), the G proteins likely playing the role of
the ‘switches’ of the model. It is proposed that the ‘switch’ activity
(modeled by the βR2 term in eqn. (A.1) and the αR1 term of eqn.
(A.2)) is likely provided by the small guanosine triphosphatases
(GTPases and especially Rho). GTPases are molecular switches
that use a simple biochemical strategy to control complex cellular
processes. They cycle between two conformational states; one
bound to GTP (the ‘active state’), the other bound to GDP
(‘inactive state’) and they hydrolyze GTP to GDP. In the ‘on’, or
GTP state, GTPases recognize target proteins and generate a
response until GTP hydrolysis returns the switch to the ‘off’ (GDP)
state. This idea has been elaborated throughout evolution, with a
mammalian cell containing several hundred GTPase switches.
The Ras super-family of GTPases are master regulators of
numerous aspects of cell behavior. These small monomeric
GTPases fall into five major groups: Ras, Rho, Rab, Arf and Ran.
Rho GTPases are an important example (Etienne-Manville and
Hall, 2002). They participate most importantly in the regulation of
cell polarity. Typical epithelial cells, such as those of interest in the
present model and such as (e.g.) those lining the colon and also
forming the Drosophila wing, form monolayers of packed cuboidal
cells with specialized cell-cell contacts and a distinctive asymmet-
ric distribution of proteins at the basolateral and apical mem-
branes. It is these (apical to basal) asymmetrically distributed
proteins which largely determine cell shape and thus the epithelial
surface shape and are then most interesting from the point of view
of the model here.

The GTPases of course have their regulators. A most impor-

Fig. 5. Surface invagination as area increases. Three invaginated axi-
symmetric middle surfaces (dots) are shown for the three total areas of
Figs. 3 and 4. The increasing areas simulate growth. The sheet thickness
h is not shown and has been taken as constant in each case for simplicity,
although this is not a necessary limitation of the model (Cummings,
2001, 2005). The parameters used throughout the computations for all
figures are λ1 = 7, λ2 =0.7 and c =1.



Pattern and form in early Metazoans   199

tant example, Moesin, acts antagonistically to the Rho pathway to
maintain epithelial integrity. In Drosophila, Moesin functions to
promote cortical actin assembly and apical-basal polarity. Cells
lacking Moesin lose their epithelial character and adopt invasive
migratory behavior. When Moesin is mutated in the fly imaginal
epithelium, a single layer of tall columnar cells with an obvious
apical basal polarity, their cells lose intercellular junctions and
epithelial polarity and are extruded basally from the epithelium.
Apparently Moesin facilitates epithelial morphology not by provid-
ing an essential structural function but rather by antagonizing
activity of the small GTPase Rho, thus regulating cell-signaling
events that affect actin organization and polarity (Speck et al.,
2003).

Studies of Xenopus embryos and cultured cells show that Wnt/
Frizzled signaling activates the cytoskeletal regulator Rho through
activation of Dishevelled. Dishevelled is a multifunctional protein
that regulates cell polarity through the non-canonical pathway,
but also regulates cell fate through the canonical Wnt/β-catenin
pathway. These results link Wnt/Frizzled signaling during epithe-
lial sheet movement to the Rho family of GTPases (Keller, 2002).
The non canonical Wnt/Frizzed pathway leading to production of
further Wnt ligand (represented by the αR1 term in eqn. (A.1) and
the βR2 term of eqn. (A.2)) seems by best present guess to go by
way of Wnt/Frizzled → G protein → Ca2+ → PKC → Cdc42 →?
(Keller, 2002; Harwood and Braga, 2003). The conjecture is that
this is the pathway that turns off the release of ‘2’ ligand at the
same time that it stimulates release of ‘same’ ligand L1 and
symbolized by terms of the r/h/s of eqns. (A.1) and (A. 2). A similar
‘2’ pathway is conjectured to operate in an analogous way to turn
off release of ligand ‘1’, at the same time as stimulating release of
the already stored ligand ‘2’. Such a pathway has as not been

described experimentally, but is predicted by the present model.
The density R1 of the model then represents most often a

‘Wnt+Frizzled’ (ligand + receptor) combination, while L1 repre-
sents unbound (‘free’) Wnt ligand. Then the ‘2’ subscript repre-
sents the second pathway coupled to Wnt, e.g., the Hedgehog
(Hh), BMP, TGF or Notch pathway (or homologues). The model
does not however restrict itself to Wnt as one of the pathways and
any other pair may have evolved to produce patterns in the
manner described.

Speculations on non-axial symmetry & stem cells

Numerical simulations reported here (Figs. 1–6) all relate to
surfaces with axial symmetry. The epithelial sheet thickness ‘h’
has also been taken as constant, for simplicity, in this first attempt.
Sheet thickness is not be shown in the surface figures and the
ratio h/√A <<1, where A is total area.

A topic not mentioned previously concerns what occurs when
surfaces come into contact. Such contact is apparently imminent
for total area A = 9Ao shown in Fig. 5. Three main scenarios may
occur upon contact, not dealt within the context of the model. The
first situation occurs when an inner layer of (mostly) non-cellular
mesoglia, such as occurs in cnidaria, forms a separating layer
between two epithelial surfaces, between ectoderm and endo-
derm. In this case, the two surfaces are separated by this
mesoglia. A surface boundary condition on the geometry is
obvious, namely that the two surfaces, endoderm and ectoderm,
do not interpenetrate. This may be accompanied by a (new)
boundary condition on the morphogens. Morphogen values may
become ‘frozen in’ in local region(s) near their maximum ampli-
tudes, initiating the next phase of development.

A second scenario occurs when two surfaces touch and there
is induction. The contacting cells may exchange pattern informa-
tion, e.g., one sheet may adopt the pattern specification of the
second in a small region, this region acting as a new boundary
condition for ongoing development. Another possibility is that the
touching regions will take on an average of the morphogen values
of the two touching regions at that point. This second scenario is
not pursued further here.

 A third possibility is that one surface will coalesce with the first
in a small region, say at the animal and vegetal poles and a new
orifice arises there. Such is imagined to occur if there is contact
at the two ‘pole’ regions in Fig. 5, that is, when the extreme values
near -∞ and +∞ of the coordinate ‘u’ come together. This will lead
to a second orifice (an anus in the case of the protostome, a mouth
region in the case of a deuterostome), at the opposite end from the
original blastopore orifice. Then the topology of the geometry is
abruptly changed (Appendix B), when the Gauss-Bonnet integral
changes from 4π (of a sphere topology) to zero, the value for a
topological ‘donut’. The first ‘through-gut’ animal has arrived.
Bilateral symmetry must also accompany the attainment of the
through-gut, as well as mesoderm, to herald the arrival of a
deuterostome or protostome, the two major phyla groupings
besides Cnidaria. The new boundary condition on pattern and
form in both cases, deuterostome and protostome, must give
doubly periodic solutions in both coordinates ‘u’ and ‘v’ on the
topological donut.

Then in general, when surfaces come into contact, new bound-
ary conditions are set up, new patterns begins to emerge, with a

Fig. 6. The metric function G = g/A is shown in the case of the total area
A = 1.9Ao, the metric coefficient corresponding to Fig. 4. The solid line
shows for comparison the (normalized) metric covering a sphere (exclud-
ing the two pole points), namely G(sphere) =2/cosh2(u). The coordinates
have been arbitrarily restricted to be ‘conformal, so that the “Pythagoras
theorem” on the curved surface has the form ds2 = g(du2 + dv2), as
discussed in Appendix B. Coordinates are simply ‘markers’ and not a
measure of distance. A small unit of distance ds along the (middle)
surface shown is measured by √g•du.
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concomitant geometrical change, both pattern and shape trans-
forming to lower symmetry.

The present model tempts a speculation regarding the pattern-
ing of stem cells. Development of mesodermal tissue in the case
of the bilaterals argues for a three-way patterning mechanism.
Continuous generation of stem cells as occurs in the Cnidaria is
also motivation to consider a tripartite pattern. Figure 2 aids
explication of the idea. Figure 2a shows a threshold of activation
of the two morphogens R1,2 by a dashed line (and thresholds for
both are assumed the same for simplicity). Each morphogen,
when below the threshold, loses its capacity to effect differentia-
tion. A threshold then divides the space into three regions. The
leftmost (u < u1) is a region where R1 is the sole active morphogen,
while the rightmost region (u > u2) is where R2 is the sole active
morphogen. The region between these two, between coordinates
u1 and u2, where both morphogens are active, corresponds to a
presumptive (what we will call) ‘stem cell’ region, a region where
neither morphogen is able to imprint its unique cellular differentia-
tion, due to the presence of the other. In the present invagination
(or primitive ‘gastrulation’) example shown in Fig. 2a and Fig. 2b,
this ‘stem cell’ region is near the arrow shown in the Fig. 2b, an
annular region corresponding to negative Gauss curvature. In
more advanced animals (the bilaterals, e.g., protostomes) these
cells may in many cases be precursors of cells of different
adhesiveness from that of ectoderm and endoderm, cells that
detach from the gastrula and migrate into the interior of the
blastula to give rise to mesodermal tissues. In more primitive
animals, those of only two cell layers and without mesodermal
tissue, (Cnidaria or Ctenophora-like) the ‘stem cells’ may become
extruded outward from the surface to initiate primitive tentacles.
A third possibility is that these cells may become detached and act
as primitive sex cells, being emitted into the surrounding watery
medium in the case of most primitive cnidaria-like animals. The
three tissue types, endoderm, ectoderm and mesoderm (‘meso-
derm/exoderm’?) have different adhesive affinities, as is invari-
ably observed at any rate in the case of bilaterals.

In Appendix C we ask what one may expect from numerical
solutions that push beyond the axi-symmetric ones presented in
Fig.s 1–6. These non-axially symmetric patterns are obtained by
two simplifications, allowing analytical solution. First, the geom-
etry is prescribed as a (thin) cylinder inside of a cylinder and
second, the pattern equations are those corresponding to small
morphogen amplitude. It is expected that as one pattern of a given
symmetry becomes extinguished, a second solution of lower
symmetry will begin to arise on an area of appropriate size and
that new pattern will always be initially of small amplitude. We
propose that such simplified solutions will give a reasonable
insight into certain aspects of the general nature of more sophis-
ticated (but very more difficult) non-axially symmetric numerical
solutions obtained when geometrical changes are coupled to
pattern changes as the animal grows.

First, the expected patterns are examined if boundary condi-
tions are such that the morphogen densities become ‘frozen in’ at
the region of the two ‘poles’ of Fig. 5, as they are brought into close
proximity. In the simplified geometry, this means that the morpho-
gens are taken to have fixed values on the two disc- shaped end
regions that close each cylinder end and are nearly in contact. The
presumption is that the numerical results of prescribing these
boundary conditions on the two ‘polar’ regions of Fig. 5 would yield

similar results as for the simplified cylindrical geometry, namely
periodicities around the mouth region. The solutions of Appendix
C leads to a periodic structure around the mouth region, with
(exponential) decaying gradients of the two morphogens occur-
ring in alternating angular regions as one proceeds away from the
head region. This solution is shown in Fig. 7. This second
patterning follows in time the original “inside-outside” gastrulation
patterning of Fig. 5 and is superposed on it. The radius of the
mouth at z = 0 is proportional to the number of tentacle positions,
or the proto-tentacles. Stem cells are produced in the interstices
of the two morphogens shown as the animal grows (L, r increase),
in the regions where the two morphogens compete for domi-
nance.

The horizontal line shown at z = 0 in both Figs. 7 and 8 denotes
where the figure is to be folded over so that the maximum z value
coincides with the minimum z value, giving the new inside and
outside pattern, superposed on the original. Next, the two vertical
sides at angles ϕ = +π and –π are to be joined, giving a cylindrical
structure in both cases.

A second example, giving a view of the general direction of
development expected on basis of the model, is provided by the
‘through-gut’ geometry. Here we imagined that the ectoderm and
endoderm meet at the ‘poles’ in Fig. 5, but now the surfaces fuse,
cell death occurs so that an opening is created at this point. The
Gauss-Bonnet integral of eqn. (B.9) changes from 4π to zero and
the new structure is topologically that of a ‘donut’ (or a ‘sphere with
one handle’). In Appendix C it is argued that if the structure of Fig.

Fig. 7. Proto-cnidaria. The figure represents an inner cylinder that has
been folded into an outer cylinder (of slightly larger radius), each cylinder
closed at one end by a disc on which the boundary conditions are taken
that both morphogens are held constant. The figure is topologically
equivalent to a sphere, as is a gastrula. The figure is to be viewed as
folded over at the coordinate z = 0, the ‘mouth’ region, so that z = +0.8
coincides with z = –0.8. Secondly, the two vertical sides are to be joined,
since the solutions are periodic in the variable ‘ϕ’, which runs from –π to
+π. The two morphogens (blue and red) vary with both z and ϕ and the ‘z’
variation is an exponential decay away from a maximum at the mouth
region about z = 0. Stem cell regions may be envisioned to occur in the
small interstitial regions between the two dominant morphogen regions.
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5 is sufficiently elongated, (the donut is now envisioned as
elongated along the axis) and in the simplified cylindrical geom-
etry, L (length) >> r (radius), a bilateral, segmented protostome or
deuterostome results, a “Pre-Cambrian worm”. Segment number
‘m’ will increase with length, kL ∼ m. Figure 8 shows the resulting
pattern on both the inner and outer cylindrical structure according
to the model equations. The Gauss-Bonnet integral of eqn. (B.9)
is +4π on the outer surface and –4π on the inner portion of the
surface.

Both patterns, of Figs. 7,8 will be ‘tripartite’; there will be
regions in which both morphogens compete more or less equally,
but neither dominates. A (much smaller) region separates the
segments, regions where each morphogen exerts nearly equal
dominance and neither morphogen will effect differentiation in this
region. Stem cells (for want of a better term), undifferentiated
cells, will then occur in this region of competing morphogens. In
the most primitive ‘urworm’, these stem cells may next migrate
inward between the two layers to first form mesodermal muscle or
nerve processes. Previously, stem cells had also migrated from
the blastopore region (c.f. Fig. 2) to form an inner mass that also
formed into mesoderm in the case of the protostome. Such a
structure, as mimicked by Fig. 8, is adaptive in that forward motion
of the animal is facilitated, a long gut allows for most complete
digestion of single-celled animals and plants in its path along the
sea bottom, and stereo sensors will evolve. The blastopore

opening is the mouth in the case of the protostome and undi-
gested remains are extruded from the new second opening, the
anus. It is generally agreed that there are about nine protostome
phyla, the largest of which are the Mollusca, Annelida (segmented
worms) and Arthropoda (which includes insects).

Another monophyletic group of phyla besides the protostomes
is the deuterostomes (e.g., Futuyma, 1998), in which the blasto-
pore becomes the anus after formation of the second opening,
which becomes the mouth. Embryonic cleavage is radial instead
of spiral and a coelom develops from a series of evaginations
(pouches) of the primordial gut. There are four deuterostome
phyla, the largest of which are Chordata (includes the verte-
brates) and the Echinodermata (e.g., starfish, sea urchin). Unrav-
eling the complicated early history of the Echinoderms remain
highly controversial (e.g., Smith, 2004).

Discussion and speculation

It is of much interest to extend the numerical computations to
include the case of non-axially symmetric ‘animals’. Appendix C
gives an admittedly crude first attempt toward guessing the
general direction of such calculations. A numerical model is to be
desired, taking into account the coupling of pattern to shape and
going beyond the small amplitude pattern regime into the nonlin-
ear.

Fig. 8. Proto-protostome. This figure illustrates a geometry topologically equivalent to a
donut. An inner cylinder is joined at either end to a (slightly larger radius) outer cylinder
allowing (approximate) analytic solution. The figure is to be viewed as if the z coordinate is
folded over at z = 0 so that z = 22 coincides with z = –22, to give both an inner and outer
(‘epidermal’) layer. Since the figure is periodic in the angle ‘ϕ’, the vertical axes at –π to +π
are to be viewed as joined. A most primitive protostome is envisioned, bilaterally symmetric
with only three ‘segments’ and a ‘through-gut’. Such an animal may reasonably be assumed
to be adaptive. The pattern shown follows in time an original pattern delineating the ectoderm
(e.g., z > 0) from endoderm (z < 0). Endoderm arises later from stem cell regions.

There are six first order differential equa-
tions included in the present time-independent
computations, namely R1, R2, g and their three
derivatives with respect to coordinate ‘u’. In
generalizing the calculations to non-axial sym-
metric cases, the present single line of the
variable ‘u’ (where approximately –15 < u < +15
in practice) must be expanded to a rectangular
grid in the two variables (u, v). The present
solution assigned six values to each little square
along ‘u’, all squares of the same size. In the
non-axially symmetric case, this must be ex-
panded to assignment of nine variables (three
variables and their six derivatives) to each
square of the rectangular grid, clearly involving
much more muscular computation than at
present. When one goes to the non-axial sym-
metry case, the coordinate ‘v’ can no longer be
interpreted as an angle, but the morphogens
and ‘geometry g’ can still satisfy periodic bound-
ary conditions in this coordinate. The present
computations hope to show feasibility and to
point to the direction of future work.

The present numerical calculations were all
carried out with Student MatLab and the code is
available by request from the author.

A model of coupled pattern and form has
been presented, involving the interaction of a
pair of signaling pathways. It is expected that
Wnt is one ubiquitous pathway in early develop-
ment. A prediction is that ligand secretion oc-
curs as a result of stimulation by like ligand and
is a process bypassing the nucleus, a process
fast compared to processes that go through
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transcription and gene activation in the nucleus.
The results of Wikramanayake et al. (2003) indicate a key role

for the Wnt/β-catenin pathway in the evolution of axial asymme-
tries and endoderm formation in an ancestor that existed before
the evolution of the mesodermal germ layer. The observation that
selective accumulation of β-catenin occurs at one embryonic pole
in both cnidarians and deuterostomes indicates that this mecha-
nism evolved early in animal development. It is speculated that
this was a key player in an innovation leading to the initial
segregation of germ layers, the segregation of endoderm from
ectoderm, from a single layered blastoderm during earliest animal
evolution.

It is suggested by the present patterning mechanism that an
adaptive mutation occurred near the critical Precambrian-Cam-
brian boundary when single celled eukaryotes gave rise to multi-
cellular animals. The evolutionary ‘discovery’ of a coupling mecha-
nism between two different signaling pathways (e.g. prototypes of
Wnt and Hedgehog, or Wnt and BMP) could have triggered the
separation of germ layers, necessarily accompanied by an invagi-
nation. Such an initial invagination from a sphere enclosed by a
single layer of cells, a blastula, would necessarily occur in con-
junction with a number of other felicitous circumstances. These
include a suitable level of oxygen, a lack of predators, a plethora
of single-celled prey, as well as the existence of very sophisti-
cated eukaryotic cells. The endoderm of the multicellular organ-
ism becomes a primitive crucially important digestive region. The
plant Volvox may lead one to think that sex may have already
developed before the appearance of metazoans.

It is clear that formation of multicellulars giving rise to metazoa
must consist of more than a mechanism joining cells by an
adhesive mechanism. Such would lead very most likely to a non-
adaptive clump. The most primitive animal is envisioned rather as
consisting of a closed epithelial sheet adept at catching and
ingesting prey. The plant Volvox may have had a non-plant
analogue, now extinct, which first had attractive cell-cell interac-
tions and thus signaling. Separation of a blastoderm into endo-
derm and ectoderm via a proto-gastrulation epithelial sheet move-
ment provides critical factors of such a first and most primitive
animal. Another crucial and necessary factor must be replication,
by either sex or budding.

The key question of propagation, whether by budding or sex is
a complex one, not addressed in the present work. Many other
questions and puzzles are perplexing, for example, the role of the
HOX genes in development. These regulatory genes play some
undetermined role in distinguishing segments from one another in
an animal more advanced than the most primitive worm in which
all segments (except at or near each end called the head and tail),
are initially the same.

Another fundamental unresolved puzzle, in the context of the
present model, is how one pattern function is picked out from
another possible one of the same symmetry. This arises as one
pattern of higher symmetry decays away, to be replaced by one
of lower symmetry. It is hinted here that the coupling of pattern to
geometry may act, at least partly, to pick out particular patterns
from among those allowed. In the example of the ‘proto-worm’ of
Fig. 8, it was the particular geometry, i.e., a length greatly
exceeding the constrained radius, that served to at least partially
select a particular pattern of segmentation and bilaterality.

Of course, Darwinian adaptation (Futuyma, 1998) must be a

crucial factor, if not the crucial one, in pattern choice, picking out
those most adaptive from those possible. Perhaps this process of
‘picking a pattern’ by coupling pattern to geometry is a general
result, but only further numerical work will tell. If geometry picks
out pattern, what then picks out the particular very early geom-
etry? Genes and adaptation is the apparent answer. Adaptation
can only be put into the model ‘by hand’, involving as it does the
external environment. But the present work argues for a restricted
universe of possible basic animal plans.

How then do the genes determine animal shape? At each
stage of development, a pair of interacting signaling pathways
activates genes according to a pattern. These genes in turn
produce a patterned trio (at minimum) of specific proteins that act
to specify the three required cell parameters needed to uniquely
specify shape. These parameters are the local apical area, basal
area and cell height of the epithelial sheet at each point of the
surface. Many specific intermediate steps are omitted in this glib
answer, steps that are fast becoming elucidated in various labs.
The genes are central to all living processes of course, but we
mean to highlight here the interconnectedness of genes, signal-
ing pathways and morphological development.

Another important question implicit in the model concerns the
cause of the demise of a particular pattern of given symmetry as
overall growth proceeds. One possible answer from the point of
view of the model is that since only non-negative morphogen
values and geometry ‘g’ solutions are allowed, specified bound-
ary conditions only allow the morphogen amplitudes to grow to a
fixed extent. As growth proceeds and total area ‘A’ increases, in
any given spatial region, amplitude of one morphogen increases
while the second decreases. Since this second morphogen can-
not become negative, this may provide a cutoff, at which point the
next allowed solution – of lower symmetry and originally small
amplitude – will come into play as the first pattern disappears.
Also possible is the role of the G protein switches in terminating
a given pattern when the amplitude become too large. Future
work must also investigate the role of the Gauss-Bonnet theorem
in providing constraint on possible patterns and shape.
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Appendix A

Model of interacting signaling pathways

There are two simple elements of the model. Attention is
focused on a small cluster of cells, ∼ five-ten, when use of such
terms as ‘ligand density’ and ‘receptor density’ has meaning. The
cells are to be thought of as comprising a closed epithelial surface,
so that the densities of the model have dimensions of ‘number per
unit area’. Variation of the morphogens (the R’s or L’s) along the
apical-basal direction is not considered, or rather thought of as
being an averaged value in this dimension.

First of all, each such ‘cell’, or rather cell cluster, produces
ligand of like kind proportional to the level of receptor activation.
Morphogen R1 stimulates production of L1, otherwise the process
would be limited to a purely local one if “like-ligand” production
were not induced, the particular cell in question then acting as a
‘sink’.

The second key element in the model is that activated of a
pathway acts to inactivate the other; as R1 increases, the level of
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ligand production L2 is decreased and similarly for R2. The
equations representing such a process are

∂
∂

= ∇ + − +
t

L D L R R NL1 1
2

1 1 2α β . , (A.1)

∂
∂

= ∇ + − +
t

L D L R R NL2 2
2

2 2 1β α . , (A.2)

∂
∂

= −
t

R C R L R1 1 1 1 1µ , (A.3)

    
∂
∂

= −
t

R C R L R2 2 2 2 2ν . (A.4)

The first two terms in eqns. (A.1), (A.2) represent in the usual way
diffusion of the ligands in the extracellular space. All parameters
in the model (e.g., α, β, D1, C1, µ, ν) have positive values, as do
also, of course, the densities L1, L2, R1 and R2. The terms αR1 in
eqn.(A.1) and βR2 in eqn.(A.2) represent the production of ‘like’
ligand by the corresponding activated receptor. These same
terms are used to represent the fact that activation of receptors of
density R2 deactivate or turn off production of free ligands of
density L1 and vice versa. A sort of ‘toggle’ is produced, where a
region of high activation of one implies low activation of the
second. The term NL on the r/h/s of eqns.(A.1) and (A.2) indicate
that there are expected to be nonlinear additions to the toggle;
saturation will set in for large enough values of either active
receptor density.

The transmembrane receptors, which reside in the lateral cell
plasma membrane, are relatively immobile. The respective acti-
vated densities decay at rates µ and ν and this ‘decay’ returns the
receptors to their inactive state. Two first terms on the right side
of eqns.(A.3), (A.4) say that there is a positive rate of change of
R1 or R2 proportional to both the density of empty receptor sites

( R R1 2, ) and also to the density of free ligands at the particular

local cell site. The density of empty sites may be obtained from the
expression

R R R Ro1 1 1+ = +η , ( .)R const0 = ,

where the last term on the r/h/s expresses the possibility that the
total number of receptors of each type (e.g., ‘1’) increases with
activation of that same type receptor and new (empty) receptors
are thus added. Then the empty receptor site density may be
written

 R R Ro1 1 11= −( )ε , ( 0 1 11 1< ≤ ≡ −ε ε η, ( ) / Ro ), (A.5)

and similarly for type ‘2’. The values ε = 1 (and η = 0), implies that
there is no receptor augmentation ∼ R1, while ε ∼ 0 implies either
that there is a new empty receptor created for (almost) every one
occupied, or that there are very many more empty sites than
occupied ones. When eqn. (A.5) and the analogous equation for
type ‘2’ is used in eqns. (A.3) and (A.4) to eliminate the unoccu-
pied site densities, the model then comprises four coupled
equations for four unknowns. The coupling from epithelial shape
to morphogen and back, has not as yet been specified (cf. text in
section entitled "Coupling pattern to geometry").

The small amplitude, time independent (∂/∂t = 0) version of
eqns. (A1)-(A5) are simply the Helmholtz and Laplace equations

∇ − + − =2
1 2

2
1 2 0( ) ( ) ,R fR k R fR  (A.6)

and

∇ + =2
1 1

2
2 2

2 0( / / ) .R k R k  (A.7)

The definitions k2 = k1
2 + k2

2, f = β/α, k1
2 = αC1R0/(D1µ) and k2

2

= βC2R0/(D2ν) have been used. Several forms may serve to
model the ‘N.L’ terms on the r/h/s of eqns. (A.1) and (A.2). The
simplest and the one used in present simulations is to let

R1-(β/α)R2 → (R1-(β/α)R2)/(1+ ((R1-(β/α)R2)/c)2).

The constant ‘c’ is ∼1. Others forms will no doubt lead to other
surface shapes for the invagination. The R’s hereafter stand for
dimensionless quantities after division by Ro of eqn. (A.5).

One possible process of producing ligand upon activation of
the cell surface receptor could involve numerous steps, involving
(e.g.) gene transcription, the endoplasmic reticulum (ER), the
Golgi complex and finally perhaps secretion from the cell. This
time is expected to be considerable compared to the time for a
free ligand in a given spatial region to become attached to its
receptor and to activate the pathway. However, it is supposed
here instead that R1,2 acts downstream to release already stored
ligand, (stored at, e.g., a constant rate by an unspecified cellular
mechanism). The cell maintains a relatively constant store of
ligand awaiting a release signal ∼ R (analogous (in this respect
only!) to the situation of neurotransmitters in neurons). The two
times (a: emission time interval between receptor activation and
like ligand emission and b: empty receptor uptake of ligand L) can
thus be comparable. This is the situation envisioned here and will
have to serve as a prediction of the model at this point: the
activated receptor R1,2 releases ligand already stored in vesicles,
so that this time is appreciably shorter than ligand production and
storage via gene activation, ER and Golgi. Importantly for the
model, Wnt (cf. Text sec. 4) has two known modes of action, one
that bypasses the nucleus and a second ‘canonical’ pathway
leading to gene activation via stabilization of nuclear β-catenin.
The former ‘non-canonical’ path bypassing the nucleus acts (at
least in part) to release stored Wnt ligand relatively rapidly.
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Let us agree for simplicity to always draw coordinates on any
surface so that a network of (very) small squares covers every
surface, such squares varying in size over the surface. The
surface being referred to will be the middle surface bisecting an
epithelial sheet of varying thickness. Since coordinates are a free
choice of the observer, this can be done. This simplifies the
discussion, without losing generality. As an example, a sphere
can be covered by small squares by transforming the usual
spherical polar coordinates (θ, ϕ) to the new coordinates (u, v) by
sin(θ) = sech(u) and ϕ = v; the coordinate v then defines the polar
angles as before, but the coordinate u is no longer the azimuthal
angle θ and in fact runs from -∞ to +∞ at the two poles. (The two
mathematical points at the poles are excluded). We realize that
when we are describing such surface deformations as invagina-
tion from an original sphere, the usual polar coordinates are not
suitable, while the new coordinates (u, v) can still serve very well.

In these ‘conformal’ coordinates, a number of usual quantities
can be given. The squared distance between to nearby points, the
‘Pythagoras theorem’ on a curved surface, is given by (e.g.,
doCarmo, 1976)

ds2 = g(u,v)•(du2 + dv2). (B.1)

An element of area on the surface is

dA = g(u,v)•du•dv. (B.2)

The Laplacian operator is given by

∇ = ∂ ∂ + ∂ ∂2
2 2 2 2/ /

( , )

u v

g u v .  (B.3)

The factor g(u,v) (of dimension ‘area’) has no physical meaning
except in combination with other quantities and this is generally
the case for the coordinates as well, the latter serving merely as
position ‘markers’. (To be precise, g is the component of a tensor).
The point to notice is that the factor ‘g’ determining the geometry
enters the pattern eqns. (A.1)-(A.4) via the Laplacian. The most
familiar form of the Laplacian (sometimes called the Beltrami
operator in curved space) is that of a flat space, when g ≡ 1, when
the coordinates alone then measure distance. A simple example
of g on a curved surface is that for a sphere, when g may be
independent of the angular coordinate ‘v’ and has the expression
g(u) = R2/cosh2(u), with -∞ < u < +∞. One goes from one such
‘conformal’ coordinate system to another by any ‘analytic’ trans-
formation, while keeping the geometry the same.

Gauss long ago (∼1860) gave an exact equation for the ‘metric’
function g as determined by the Gauss curvature ‘K’. This is

∇ = − ⋅2 2log( ( , ))g u v K ,  (B.4)

(where ‘log’ means base ‘e’).
Both curvatures, Mean (H) and Gauss (K) are necessary to

describe a surface. It is a key element of the present model that
the Gauss curvature, as well as the Mean curvature is considered
to be a function of morphogens R1 and R2 and their first deriva-
tives. We note that the both the Mean as well as the Gauss
curvatures are necessary to describe a surface. The Mean
curvature ‘H’ is the average of the two principal curvatures, while
K is the product of these, so that it follows easily from their
definitions that

K = H2 - D2. (B.5)

Here D is (by definition) the difference of the two principal
curvatures divided by two, D ≡ (κ+ - κ-)/2. It has previously been
shown (Cummings, 2001, 2005) that the Mean curvature ‘H’ at a
point is simply proportional to the apical area minus the basal area
in the surface divided by the sheet thickness ‘h’ at the particular
point, i.e.,

H = (1/2)(A - B)/h.  (B.6)

The dimensionless quantities ‘A’ and ‘B’ (0 < (A, B) <  4) are the
apical and basal areas Aa and Ab each divided by a (small, square)
area element Am in the middle surface, so that (e.g.) A = Aa/Am. In
terms of A, B and h, the Gauss curvature is given by (h/2)2K =
((A+B)/2-1). Equation (B.6) motivates one to assume that the
Mean curvature H be taken as a linear function of the (dimension-
less) morphogen difference (R1- (β/α)R2), giving

H Area R R= ⋅ + ⋅ −4 1 1 1 2π λ β α( ( ( / ) ))  (B.7)

Here λ1 is a ‘geometry’ parameter of the model, (and typically
taken as ∼ 5→10 in numerical work). The factor (4π/Area) under
the square root arises for the following reason. When the morpho-
gens (the R1,2) are zero and the size of (say) the sphere radius is
below the critical size rc needed to give rise to a spontaneously
growing solution, then H must be given by its sphere value for all
smaller radii, namely H = 1/r, where r < rc and the morphogens R1,2
= 0.

In a more complete model it would be necessary to know (or
model) how the cell heights ‘h’ vary over the epithelial surface with
morphogen and models of this behavior can be envisioned. In the
present numerical work, the cell heights are held constant as a
first cut. In the numerical work they are taken so that h/(Area)1/2

= 0.1.
Now that a reasonable guess has been made for H in eqn.

(B.7), another guess must be made for the factor ‘D’ of eqn. (B.5)
to give K, so that the model becomes completed or closed. There
are two important constraints that D must satisfy. Since K is an
invariant, as are the morphogens, then D2 must also be an
invariant. Secondly, at the two poles, at u = -∞ and u = +∞, we must

Appendix B

Notes on the geometry of curved surfaces
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This appendix examines a simple model allowing analytic
solution that breaks the axial symmetry, axial symmetry being a
limitation of the computations shown by the Figs. 1–6. Two
different boundary conditions are discussed. The case of the
‘proto-cnidaria’ is considered first.

It is hoped to convince one that a plausible assumption for
boundary conditions is all that is required to provide periodicity
around the mouth region in the case of cnidaria-like animals. The
same simple model also gives an exponential decay of each
morphogen down the axis. Stem cells occur between the two
axially decaying morphogens.

Imagine a sort of ‘balloon’ (i.e., thin elastic sheet) of length ‘2L’
and radius ‘r’ in the shape of a circular cylinder, with flat ends.
Label one end as z = L and the other as z = –L, with the length
coordinate z = 0 halfway between the two ends. Next we imagine
pushing one end of the cylinder into the other, roughly mimicking
Fig. 5 of the invaginating sphere. (That is, simplify the calculation
by simplifying the geometry of Fig. 5 to a cylinder, to make the
point. The same point could, however, also be made with an
invaginated sphere). The two surfaces are now viewed as sepa-
rated only by a very thin non-cellular substance (e.g., a mesoglia
in the case of cnidaria). The two cylinder ends (discs) come

Appendix C

Proto-cnidaria and proto-bilateria

require that D → 0, since here the surface will take on values
corresponding to a local sphere. These two conditions (plus
Occam’s dictum!) provide a strong incentive to take D such that

K = H2 - λ2•(∇ (R1- (β/α)R2))
2,  (B.8)

Given the fact that the boundary conditions are that the morpho-
gen derivatives vanish at the poles, or ∂R1,2/∂u → 0 there, we see
that K then takes on the local spherical value at these boundary
points, when D → 0. The squared gradient would seem to be a
required element of the ‘D’ factor with this derivative condition.
The second ‘geometry’ parameter λ2 > 0 is a constant (numeri-
cally ∼ 0.5 → 1 in present simulations). In the numerical simula-
tions of the figures, λ1 = 7.0, λ2 = 0.7 and c = 1.

Another way to view the functional form of ‘D’ is to think of the
two principal curvatures as having changed variables to new
variables A, B by κ± = A ±Ω≈BΩ. Then A = H by definition and B
must be given so that the second term vanishes at the poles. This
gives B most simply and in view of Fig. 2, as a linear combination
of R1,2.

There is an important and remarkable theorem involving the
Gauss curvature ‘K’ and one which must be taken into account in
any numerical simulation. This is the Gauss-Bonnet theorem,
which says that the integral of the Gauss curvature over the entire
surface is equal to 4πxn, where n is an integer or zero. In symbols
this is

K dA g K dudv n⋅ = ⋅ ⋅ =∫ ∫∫ 4π (B.9)

For a shape topologically equivalent to a donut, (such as a
possible animal with a ‘through-gut’), n = 0, while for any surface
topologically equivalent to a sphere (e.g., a blastula or gastrula),
n = 1.

Equation (B.9) provides an essential constraint for numerical
work, in particular for gastrulating or invaginating surfaces. The
arrow in Fig. 2 points to a point on a circle where the Gauss
curvature is zero and is changing sign from plus (on the outside
surface) to minus (on the inside). At this circle where the Gauss
curvature is zero, one imagines completing the surface by adding
a flat (where K ≡ 0) disc to close the top of the surface, that is, a
disc to take the place of the invaginated part of the surface. This
shows that the integral of K over the surface up to the arrow, the
integral taken only over the ‘outside’ surface, must be 4π. Thus,
surprisingly, the invaginated part of any surface, no matter how
convoluted, must have a value for the Gauss-Bonnet integral of
zero. This fact provides an essential constraint in numerical work,
emphasizing the importance of the negative contribution of the D2

term to the Gauss curvature K of eqns. (B.5) or (B.8); without a
negative region of K invagination would not be possible. For a
‘donut’ topology, similar arguments show that the Gauss-Bonnet
value for the outer surface of the donut must be +4π, while the
inner surface of the donut must be -4π, even as the donut
becomes very distorted from its original donut shape.

Finally it should be mentioned that in the axially symmetric
case, the boundary condition on the metric component ‘g’ is found
easily by integration of the Gauss equation (eqn. B.2) over ‘u’ to
give that ∂(loge(g))/∂u = ± 2 for u = ± ∞. Continuity is required of
both morphogens and geometry.

(almost) into contact, as do the sides of the two surfaces and z =
0 is around the ‘mouth’ region.

The boundary condition is taken to be that the morphogens are
constant (equal for simplicity) at the two ends (two discs) of the
cylinder (almost) in contact, so that R1 and R2 = constant. (Take
α = β for simplicity in Appendix A). The genome determines which
regions become “fixed” or ‘frozen in’ of the two morphogen
densities and in which other regions this ratio will remain relatively
more changeable. Perhaps the passage of time is correlated with
fixing of the ration of the two types. If localized regions of cells are
able to have their morphogen values fixed, e.g., when a certain
high amplitude is reached, then new boundary conditions can be
continually created, thus determining the course of subsequent
development.

The equations of the model are now solved for the small
amplitude case of eqns. (A.1)-(A.5), when the morphogen differ-
ence R1-R2 satisfies the Helmholtz equation,

∇2(R1-R2) + k2(R1-R2) = 0  (α=β, k = const.) (C.1)

and the sum, R1/k1
2 + R2/k2

2, satisfies Laplace’s equation. Given
the boundary condition that the two morphogens are taken equal
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at the ends of the cylinder, R1 = R2 at z = ± L, the solution in
cylindrical coordinates is

R1 = C + k1
2Fexp(-Λn•|z |/r•cos(nϕ), (C.2)

R2 = C - k2
2F•exp(-Λn• |z |/r)•cos(nϕ). (C.3)

Here C and F(n,r) are independent of coordinates z and ϕ, C >
k2

2F and ϕ is the angle around the axis and

Λn = +√(n2–k2r2). (n > kr). (C.4)

Here exp(–Λn·L/r) is required to be ≈ 0 at z = +L and – L to
satisfy the end condition. (In the sphere case, the functions in
eqns. (C.2) and (C.3) are replaced by (sin(θ))n cos(nϕ)), k2R2 =
n(n+1)).

In the case of (e.g.) hydra, the (length/radius) ratio L/r is ∼ 10.
Terms determining periodicity (tentacle positioning) in the model
here will have only one dominant ‘n’ term, with n ≡ integer ∼ kr+µ,
since only these will contribute most significantly to the exponen-
tial. Thus there will be only one major term in a superposition
solution and the n+1 term contributes to a much smaller extent.
The amplitudes F(n,r) in a two term superposition solution will
change so that F(n,r) will decay rapidly as kr → n, as F(n+1,r)
begins to grow. Then we expect that the number of ‘tentacles’ n
will be proportional to the radius r as L and r each increase as the
‘animal’ grows and (e.g.) L/r ∼ constant.

The two morphogens alternate around the axis as a function of
angle and decay exponentially down the body axis, with the
highest values of each achieved in the head region, z ≈ 0. This is
illustrated in Fig. 7. The Wnt and BMP pathways are suggested as
possible interacting morphogens in the case of hydra (cf. Reinhardt
et al., 2004 regarding BMP and hydra).

As discussed in the section entitled "Discussion and specula-
tion" of the text in relation to Fig. 2 and thresholds, it is predicted
by this simple model that stem cells be created continuously as
growth occurs. This occurs in regions where the two morphogens
are competing, R1 ≈ R2, that is, where neither of the two have
clearly established unique regions of dominance. These will be
continually migrating into the tentacle region. Figure 7 shows the
patterning due to the boundary condition at the cylinder ends.
Similar patterns result when the same constant is not assigned to
each morphogen at the boundary.

This model is intended to show that periodicities can be
expected around the ‘mouth’ region due to simple boundary
conditions. Note that the Laplacian operator of eqn. (C.1) has
been taken with the metric as constant and thus it is to be
emphasized that the remarks here do not include important but
unknown effects due to coupling morphogens to the geometry
and back to the morphogens. Such coupling is expected to add
interesting aspects, neglected here.

A second version of this simplified model involves the case of
the topological ‘donut’, when the Gauss-Bonnet integral is zero.
Here it is imagined that the two ends of the balloon come into
contact at z = +L and –L, cell death and fusion occurs in this region
so as to create an opening at these ends. The ends are now
absent and the shape resembles a donut stretched along its axis.
This case crudely mimics a ‘through-gut’ animal, one with (ini-
tially) only endoderm and ectoderm. In this case the boundary
conditions are such that morphogens must be periodic in both

variables ‘z’ and ‘ϕ’ of the cylindrical geometry, except now the
geometry is that of a ‘donut’ extended along its axis. Now instead
of (C.2) and (C.3), the solutions are taken as

R1 = C + k1
2F•cos(πmz/L)•cos(nϕ), (C.5)

R2 = C - k2
2F•cos(πmz/L)•cos(nϕ), (C.6)

so that when z → (z + 2L) the solution is unchanged. L and r are
related through the constant k and the integers n and m by

1 = π2m2/(kL)2 + n2/(kr)2. (C.7)

If each positive term of (C.7) is ∼ 1/2 so as to give a sum of unity
and L >> r, a bilateral, segmented (m equivalent segments)
protostome or deuterostome, a sort of Cambrian ‘worm’ results.
The first pattern with n = 1, kr ∼ √2, when kL ∼ πm, where m is the
segment number, already provides dorsal/ventral patterning and
bilateral symmetry. As n increases with increasing r, more axial
pattern stripes can emerge perpendicular to the m >1 segments,
but the first emergence of the n =1 pattern when kr reaches √2 with
growth already provides bilateral symmetry.

Figure 8 shows the non-axially symmetric pattern resulting for
a through-gut case. Both inner and outer surfaces are again
shown, but with no connecting surfaces and the region z ≈ 0 is the
region at one end.

The two examples given, mimicking a primitive ‘cnidaria’ and
‘annelid’, are only valid for small morphogen amplitudes and the
animal shape (i.e., cylinder inside cylinder) has been prescribed.
The point of the exercise is to indicate that simple boundary
conditions in each case nevertheless allow one to conjecture as
to general directions of early development which will ensue when
shape changes are coupled to morphogen in a more realistic
model.

It is interesting to remark that an equivalent way of viewing
eqns. (C1)-(C7), giving another interpretation, (c.f. Hayashi and
Carthew, 2004) is that they result from minimization of the
integrals ‘I’ and ‘J’, where

I k dA= ∇ −∫ (( ) )Ψ Ψ2 2 2 , Ψ ≡ −R R1 2  (C.8)

J = ( ) ,∇∫ Θ 2 dA Θ ≡ +
R

k

R

k
1

1
2

2
2

2
2 ,  (C.9)

where k2 = k1
2 + k2

2 and α = β.
Thus the thrust indicated by (C.8) is toward a compromise of

two opposing tendencies. First, keeping gradients of Ψ as small
as consistent with boundary conditions lowers the value of the
integral I. On the other hand, due to the minus sign under the
integral of (C.8), minimization also points to increase in area(s)
occurring in those spatial regions where the second term in the
integrand exceeds the first and where (squared) morphogen
difference reaches maximum allowed value. In this way, the
regions where growth occurs are implicit in the model.

This Appendix has attempted to push the simple model as far
as reasonable. The aim is to take a guess at the outcome of proper
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numerical computations with the model. Two different boundary
conditions have been played out to the extent allowed by analyti-
cal methods, hoping to illustrate that simple assumptions about
boundary conditions can lead to suggestive patterns. The next
stage in development in the doubly periodic ‘worm’ case is
conjectured to occur due to ingress of ‘stem cells’, cells whose
adhesivity differs from both ectoderm and endoderm, the latter
two differing from each other in adhesiveness in turn. In the case
of the ‘like’ boundary conditions on the two close-by discs at z =
±  L, (the ‘proto-cnidaria’), a periodic egress of stem cells near z
= 0 may be surmised to occur first and imagined to give rise to
‘proto’ tentacle–like structures. A new duet of signaling pathways
then comes into play, possibly with Wnt again being one member

of the next patterning duet.

The genes, acting via signaling pathways, provided first (pre)
patterning and only subsequently, differentiation and localized
morphogenetic movement and overall organism shape changes.
Clearly Darwinian adaptability provides the most important con-
straints on possible phenotypes. It is proposed that there are also
constraints due to the particular patterning mechanism discov-
ered by mutation(s) at the dawn of multicellulars, due to the
particular way the pattern of morphogens couples to cell shape
change, adhesiveness and migration. The present work means to
push the limits of the influence of constraints of the pattern-form
as discussed above beyond that previously envisioned.


