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Mechanics in embryogenesis and embryonics:
prime mover or epiphenomenon?
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ABSTRACT Mechanics is shown to be an important, perhaps central component to the differentia-
tion and development of embryos. Mechanics of the nucleus may also be involved in determining
which genes are expressed in a given cell. There are two major approaches at present to the
mechanics of differentiation in embryos: morphomechanics and differentiation waves. These are
compared in detail, to provide a starting point for future experimental work to bring them into one
conceptual framework. This may rationalize the present cookbookery of stem cell production by
placing it in the context of differentiation waves and the differentiation code. Embryonics, the
realization of concepts from embryology in computer hardware and software, might be consider-
ably enhanced by incorporating mechanical concepts of embryogenesis. Segmented robots,
modular robotics, cellular microrobotics, flexible electronics, wearable computers, diatom
nanotechnology and waves in active media point to a synthesis that we could call embryonic
robotics.
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Introduction

The ascendancy of molecular biology over the past half cen-
tury has left untraveled and abandoned roads in biological re-
search. One of them began in earnest with the efforts of Basel
born Wilhelm His to explain neural tube closure by analogy to the
mechanical buckling of laminates (His, 1874). The idea was that
forces pushing from the flanks of the embryo towards the midline
caused the buckling. Unfortunately, reality interceded when
Wilhelm Roux slit the sides of a frog embryo and the neural plate
buckled and formed a neural tube anyway (Roux, 1888). The
solution to this impasse can be seen in the three dimensional
model of Jacques Loeb (Figure 1), in which the lateral forces of
buckling are generated by stretching in the perpendicular direc-
tion (a prediction later shown to be correct, with stretching
provided by the notochord and/or notoplate (Jacobson and Gor-
don, 1976; Gordon and Jacobson, 1978; Keller, 1984). Loeb said:

“If we take a thin, flat plate of elastic rubber and lay it on a
drawing-board, we can imitate the stronger growth in the center
by sticking two tacks into the middle of the rubber, a short distance
apart and then pulling them in opposite directions. In this way we
may imitate unequal growth, the center growing faster than the
periphery. If we then fix the tacks in the drawing-board, so that the
rubber in the middle remains stretched, we get the same system

of folds as that shown by the embryo of a chick. | mention this way
of demonstrating the effects of unequal growth as the ideas of His
are still doubted by some morphologists” (Loeb, 1912).

Indeed, except for Loeb, who generally avoided discussing
internal mechanisms (Pauly, 1987) and a few others (Glaser,
1914a,b; 1916), His’ mechanical approach to embryos almost
vanished from the scientific literature. His was also vehemently
opposed by Ernst Haeckel, which didn’t help (Oppenheimer,
1967).

The biggest foray last century into the mechanics of develop-
ment, which unfortunately has little impact in embryology, per-
haps because it eschewed genetics (Keller, 2000), is that of
D’Arcy Thompson in his book On Growth and Form (Thompson,
1917, 1942). Thompson'’s transformations have proved useful in
tracking shape change (Kavanagh and Richards, 1942; Richards
and Kavanagh, 1943, 1945; Burnside and Jacobson, 1968;
Jacobson and Gordon, 1976a; Gordon and Jacobson, 1978;
Bookstein, 1978; Bookstein et al., 1985; Bookstein, 1991), but
not, so far, in uncovering underlying mechanisms. For example,
given that the mitotic apparatus appears to swing in the direction
of elongation of elongated gourds, such as the snake gourd, but
is random in round gourds (Sinnott, 1960), one would expect that
directed cell division would be responsible for plant shape. How-
ever, this has been shown to be false for leaf shape (Smith et al.,
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1996). Whole leaf mechanical approaches haven't solved the
problem (Hay et al., 2000). Similar questioning is needed for
oriented cell division in neuroepithelium (Sausedo et al., 1997).

We are now exiting a long era of genetic determinism, the idea
that somehow (His’ quite valid “To think that heredity will build
organic beings without mechanical means is a piece of unscien-
tific mysticism”, His, 1888) “genes control development” (Probst
et al., 1992). This awakening from a long sleep of reason is
occurring in fits and starts. My intention here is to give the reader
a sampling of research demonstrating roles of mechanics in
embryology and then try to consolidate the two superficially
different approaches in my research (differentiation waves) and
that of Lev V. Beloussov (morphomechanics). These mechanical
approaches have the curious consequence of reopening the
question of whether development is an interaction between cells,
or a phenomenon involving the whole organism. | resurrected this
old challenge to the cell theory (Gordon, 1999) and itis the central
theme of a new book (Pivar, 2004; Gordon, 2006). | will end by
considering possible implications of all of this for rationalization of
the production of tissues from stem cells and for embryonics, the
idea that we should create computers that build themselves by
analogy to the self-construction of embryos.

Atoms versus form

Any time-lapse movie of a developing organism shows the lie
that it is all chemistry. Embryo-scale mechanical effects are
blatant, if unexplored and thus unexplained. While at the level of
macromolecules, motor molecules abound (Schliwa, 2002) and
may be the points at which ATP and GTP provide the ultimate
chemical source of energy for the generation of mechanical
forces, the spatial and mechanical organization within cells and
between cells may govern what happens. This intellectual tension
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Fig. 1. Stretching of a sheet of rubber (dental dam) leads to neural tube formation by
lateral compression, even though there is no external force pushing the sheet laterally

(Loeb, 1912).
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between the ancient Greek idea that all that counts is the motion
of atoms, versus higher order structure, has been explored nicely
for single cells by Franklin Harold (Harold, 2001b), who moves the
problem all the way back to the origin of life.

Is there a way to resolve this tension? Physics, at least until
recently, told us that there is “nothing but” the interaction of matter
and fields (electromagnetic, gravitational, etc.). While we're not
so sure about this, with the discovery that the material of the
universe is only 4.4% baryons (Bennett et al., 2003) and accep-
tance of quantum entanglement as a real phenomenon (cf.
Gordon et al., 2005b), it would seem that the interaction model
might be sufficient to explain living phenomena. On that basis,
classical statistical mechanics provides an example of what | call
a “linking discipline” (Proposition 194 in Gordon, 1999), in which
the hard intellectual work of linking one level of explanation to
another, is done. | would contend that for embryology, this work
has hardly begun.

For example, in terms of genetics, we have not yet solved the
“simplest” morphogenetic problems:

“We are... exceedingly well informed about bacterial biochem-
istry, metabolism and genetics. One might expect, therefore, that
how bacteria grow and shape themselves would be quite well
understood. Thatis notthe case and for a significantreason: even
in bacteria, form is the result of multiple coordinated processes,
regulated in time and localized in space, that are but indirectly
related to what is spelled in the genes” (Harold, 2002).

“I hold the mildly heretical view... that the genetic paradigm as
it stands is insufficient, incomplete and fundamentally misleading.
Briefly, biological organization is made up of multiple layers,
which span the range from molecules to cells [to embryos, adults,
populations, ecologies and biospheres]. Genes do, of course,
specify order at the level of molecules and supramolecular com-
plexes that arise by self-assembly, such as ribosomes. But
molecular structures do not suffice to specify cellu-
lar structure, for cells do not arise by self-assembly
of their molecular constituents” (Harold, 2001a).

A similar challenge, now of practical importance
for“growing nanotechnology” (Gordon etal., 2005a),
lies in bridging the intellectual gap between ge-
nome sequencing and morphogenesis of diatom
shells (Drum and Gordon, 2003; Gordon and
Parkinson, 2005). We can be quite certain that the
currently popular network approaches, attempting
to simulate the gene products of the whole genome
(Tyson et al., 2001; de Jong, 2002), will not solve
the problem of form of bacteria, let alone form of
multicellular organisms, despite the enthusiasm for
this approach:

“One of the foremost challenges of 21st century
biological research will be to decipher the complex
genetic regulatory networks responsible for embry-
onic development” (Halfon and Michelson, 2002).

The reason for impending failure is that network
models do not include the physics of the organism.
For example, some bacteria have an internal pres-
sure of about one atmosphere (Arnoldi et al., 2000)
and amphibian embryos reach 7 atmospheres
(Beloussov, 1998), suggesting that physics may be
quite important for both.



Physics can have a global effect on a cell or organism. The
relevant physics might include:

1. Volume effects, 2. Electrical effects, 3. Optical effects, 4.
Magnetic effects and 5. Mechanical effects. I'll give just brief
examples of the first four:

1. The ratio of the volume of cytoplasm to the volume of the
nucleus has an effect on the cell division time and has been
modeled in sea urchin embryos (Ciliberto et al., 1999). Basal
metabolism, dependent on this ratio, affects ecology and evolu-
tion (Martin and Gordon, 1995).

2. There is an elegant model for the formation of polarity in the
spherically symmetrical algal (single-celled) egg of the seaweed
Fucus, in terms of current generating ion channels that move
together in the cell membrane (Jaffe et al., 1974; Robinson and
Jaffe, 1975). Electric (ionic) current passes out of the neural plate
in chicks (Jaffe and Stern, 1979) and regenerating limbs (Borgens
et al., 1977).

3. Cells can apparently "see" and move in a directed fashion in
response to infrared light (Albrecht-Buehler, 1992).

4. Fruit fly embryos develop abnormal segmentation patterns
when briefly exposed to weak, static magnetic fields at a critical
period (Ho et al., 1992; Ho, 1998).

These phenomena have not been consolidated into explana-
tions of how embryos form or organisms regenerate and tend to
be ignored.

Mechanical control of genes

The best antidote to the oft repeated expression that “genes
control... X"istoread the literature about X controlling genes. The
evidence for mechanical control of gene expression starts with the
work of Avri Ben-Ze'ev, who investigated changes in gene ex-
pression in cultured cells that depended on whether they were
attached to a substrate or suspended free in a gel, otherwise
being in the same medium (Ben-Ze'ev et al., 1980; Ben-Ze'ev,
1983; Farmer et al., 1983; Ben-Ze'ev, 1984a,b, 1985). He con-
cluded that “the cytoskeleton may regulate gene expression”
(Ben-Ze'ev,1991). Donald Ingber and his colleagues have placed
cells on substrate spots or squares, surrounded by hydrophobic
substrate to which they do not adhere and found that cells
differentiate at a specific spot size (Ingber and Folkman, 1989;
Mooney et al., 1992; Chen et al., 1997, 1998; Dike et al., 1999;
Huang and Ingber, 2001). Ingber concludes: “Thus, mechanical
restructuring of the cell and cytoskeleton apparently tells the cell
what to do” (Ingber, 1998).

Reciprocity between the genome and mechanics

There is much discourse on the emergence of “higher order”
properties from the interaction of lower order “units” (Emmeche,
1994; Holland, 1998; Ronald etal., 1999; Johnson, 2001; Gordon,
2000), some of itreaching religious conclusions (Morowitz, 2002).
However, most seem to miss what | regard as the essence of the
problem: higher order, so-called emergent phenomena can feed
back on the lower order phenomena and alter them. Let’s take the
extreme of our own conscious behavior. While we cannot alter the
basic laws of physics, by changing boundary conditions, we can
alter what physics happens (Martin and Gordon, 2001).

A more mundane example is the “higher order” phenomenon
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of surface tension (8§ 1.10 in Gordon, 1999). The adhesion of
embryo cells of the same and different kinds behaves quite
similarly to mixed oil and water: like separates with like “due to” the
interfacial tension (Townes and Holtfreter, 1955; Steinberg, 1963;
Phillips and Steinberg, 1969; Phillips et al., 1972; Gordon et al.,
1975; Phillips et al., 1977; Phillips and Steinberg, 1978; Edelman,
1988; Steinberg, 1996). Of course, in this case we have devel-
oped the statistical mechanics of interfacial tension to the point
where we are quite comfortable in switching between the molecu-
lar and macroscopic levels without worrying about philosophical
consequences. In this sense, the emergence seems trivial, the
awe is gone and the problem seems solved in essentially reduc-
tionist terms. The initial boundary conditions are either the ar-
rangement of cells in an embryo when adhesion phenomena are
“turned on” (via synthesis of certain membrane bound molecules,
Edelman and Jones, 1998), or the configuration in which we place
such cells in experiments.

I suspect, if we work at it long and hard enough, we will achieve
the same degree of reductionism and understanding of boundary
conditions for all of embryological development. The agenda was
set out for us by His, but no one is yet doing the sustained work
required of us:

“The ways of determining the forms and volumes of germs and
embryos are somewhat longer and more tiresome than the simple
inspection of stained sections; but the general scientific methods
of measuring, of weighing, or of determining volumes cannot be
neglected in embryological work, if it is to have a solid foundation
of facts, for morphologists have not the privilege of walking in
easier or more direct paths than workers in other branches of
natural science” (His, 1888).

In the synthesis of adhesion molecules, the role of the genome
is to turn on their synthesis at the right time and place. The cells
would then begin to move in the embryo due to their interfacial
tensions and the nonequilibrium configuration in which they
started. But what happens next?

The clue comes from our prediction (Gordon and Brodland,
1987) and discovery (Brodland et al., 1994; Gordon et al., 1994)
of waves of contraction and expansion of the surfaces of epithelial
cells in urodele amphibian embryos. Our best guess is that each
wave in which a cell participates sends a one bit signal to its
nucleus. If the wave is a contraction wave, the nucleus exposes
one new subset of its genes (compared to the subset currently
exposed), while if it is an expansion wave, it exposes an alternate
subset of its genes (Bjorklund and Gordon, 1993b). Genes that
are “exposed” are those available to be turned on or off, i.e.,
available for transcription. Sequestered genes are tucked away,
so that they cannot be transcribed.

These “differentiation waves” have a mechanical component,
which makes them simple to observe (Gordon and Bjorklund,
1996). Thus we hypothesize that the mechanics of the waves
“controls” the genes. Of course, the genes then alter the boundary
conditions, for instance, by synthesizing adhesion molecules,
which then changes the shape, tissue configuration and mechan-
ics of the embryo and probably thereby set up the conditions for
launching the next waves. We thus see that the reality may be that
there is a reciprocal relationship between the mechanics of an
embryo and its genome, rather than either “controlling” the other.
The “genetic program” is actually a “genome <--> physics” pro-
gram.
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Switching within networks or between networks?

What is occurring inside the nucleus of a cell when the cell
changes from one kind to another? Most models assume that the
nucleus is an unorganized bag of chemicals (including the genes)
arranged in a network of interactions. Such networks have “basins
of attraction” that are presumed, somehow, to correspond to the
states of differentiation of a cell (Delbrtck, 1949; Kauffman, 1993;
Huang and Ingber, 2000).

An alternative model starts from the observation that the
nucleus has quite a bit of structure, with chromosomes in specific
places (Miller et al., 1963a,b; Nagele et al., 1995, 1998) and
orientations (Francis-Lang et al., 1996), with mechanical connec-
tions between them (Maniotis et al., 1997a), to the nuclear
membrane and via the nuclear membrane all the way to the cell
membrane (Maniotis et al., 1997b). We then take as a working
model that the nucleus has a discrete physical structure, different
for each cell type, and that its configuration changes when the cell
changes from one type to another (§ 10.13 in Gordon, 1999). In
each configuration, some genes are exposed, while others are
sequestered. Thus, each configuration corresponds to a different
network. The mechanical switching between nuclear configura-
tions would, then, “control” which genes are expressed (Carroll et
al., 1995).
with

Consolidating differentiation

morphomechanics

waves

Roughly in parallel with our efforts on differentiation waves
(Gordon and Brodland, 1987, 1989; Bjorklund and Gordon,
1993a,b; Brodland et al., 1994; Gordon et al., 1994) Lev V.
Beloussov and his colleagues have worked out a mechanical
approach to embryogenesis they call morphomechanics. The
basic idea of “contact cell polarization” is that an epithelium with
an internal pressure (perhaps 7 atm in amphibians; see p. 90 in
Beloussov, 1998) can undergo a transition in which some cells
contract their apical surfaces and the rest do not. Beloussov
(Beloussov, 1998) attributes the theory explaining his observa-
tions to the late Boris Belintsev (Belintsev et al., 1985; Belintsev
et al., 1987; Belintsev, 1991). There is no need for positional
information: “...the model shows a way for a really delocalized
regulation of morphogenetic processes, without each cell ‘know-
ing’ its exact position....” (Beloussov, 1998; cf. (Beloussov et al.,
1994).

Positioning of the boundary between contracted and (pas-
sively) expanded cells in the ectoderm is provided by its nonuni-
form strain state, which can be altered by relieving the strain over
the whole surface (Beloussov et al., 1990), at the lateral margins
(Yermakov and Beloussov, 1998), or at the dorsal lip of the
blastopore (Beloussov and Snetkova, 1994; cf. Beloussov, 1988).
| have similarly postulated that the strain state of the ectoderm
determinesthe trajectory of the ectoderm contractionwave ( § 9.25
in Gordon, 1999). Slitting experiments in the neural plate reveal
anisotropic tissue tensions (Jacobson and Gordon, 1976) that
could affect differentiation waves that may be involved in segmen-
tation of the neuroepithelium (Gordon et al., 1994). Convergence-
extension movements in Xenopus also involve anisotropic strains
(Davidson and Keller, 1999). Thus we can see that my redefinition
of the genetic program as a branching alternation of physics and

gene expression (Proposition 14 in Gordon, 1999), can be ex-

tended to include the physics of morphomechanics:

1. one of a pair of differentiation waves produces:

2. change in gene expression in the cells propagating that wave,
leading to:

3. change in strain state and other physical effects (electrical,
etc.?), which result in:

4. launching of a pair of differentiation waves, etc. (i.e., go to #1
for each wave).

All of these are subsumed in a single node of a differentiation tree

(8 4.02 in Gordon, 1999). To take into account the hypothesized

mechanical events in the nucleus, the full, branching “cycle”

becomes:

1. one of a pair of differentiation waves generate a:

2. one bit signal to the nucleus, which produces:

3. change in the structure of the nucleus, resulting in:

4. change in gene expression in the cells propagating that wave,
creating:

5. change in strain state and other physical effects (electrical,
etc.?), which result in:

6. launching of a pair of differentiation waves, etc. (go to #1 for
both waves).

This model reconciles the either genetics/or physics approaches
(Beloussov et al., 1997) by incorporating both. Contact cell
polarization, then, may be seen as setting up anisotropies that
shape the trajectories of differentiation waves and perhaps create
the mechanical conditions for their launching (Gordon and
Brodland, 1987; though electrical phenomena may also be in-
volved: § 9.27 in Gordon, 1999). Morphomechanics may, further,
explain the suggested mechanical dependence of the launching
of one wave on the completion of another (a wave-wave interac-
tion and relay mechanism), which could then explain the tempera-
ture independence of the sequence of developmental events in
poikilothermic organisms (Proposition 82 in Gordon, 1999).

A number of observations suggest similarities and differences
between contact cell polarization and differentiation waves:

1. The height programs in neurulation stage urodele embryos
(Jacobson and Gordon, 1976; Gordon and Jacobson, 1978) may
correspond to the maps of contact cell polarization in gastrulation
stage anurans (Figure 2.26 in Beloussov, 1998). The rate of
propagation of the latter phenomenonis 2 to 8 um/min (Beloussov
and Petrov, 1983; Petrov and Beloussov, 1984), comparable to
the speed of the ectoderm contraction wave in axolotls of 3 um/
min (Brodland et al., 1994) (expected to be slower because of the
longer duration of gastrulation in axolotls compared to Xenopus).

2. Our empirical observation that a contraction wave in a given
tissue may be followed slightly later by an active, epiboly-like
expansion wave (Figure 16 in Gordon et al., 1994), launched at a
distance in the same tissue, would seem to fit the Belintsev model
(Belintsev et al., 1987). However, contracted ectoderm cells relax
back to their previous apical diameters (Brodland et al., 1994),
while contact cell polarization appears to persist in an “all-or-
none” manner (Belintsev et al., 1987).

3. The theory of contact cell polarization assumes that contrac-
tion of a cell is active, while expansion is passive (Belintsev et al.,
1987). Differentiation waves appear to be based on a tensegrity
cytoskeletal apparatus, the “cell state splitter” (Brodland and
Gordon, 1987; Chapter 3 in Gordon, 1999), which actively brings
a cell to either an apically contracted or expanded state via



contraction of the apical microfilament ring in a cell or expansion
of an apical mat of microtubules oriented parallel to the apical
surface (Gordon and Brodland, 1987). An intermediate filament
ring provides elasticity and allows for a metastable state of the cell
state splitter (Martin and Gordon, 1997), which presumably allows
a cell to wait for a wave to impinge upon it.

4. The trajectory of the ectoderm contraction wave (Figure 17
in Gordon et al., 1994) covers the hemisphere of ectoderm that
becomes the neural plate, while contact cell polarization appears
to have a smaller trajectory (Figure 2.26 in Beloussov, 1998),
though some contact cell polarizations do move in the cranial
direction (Novoselov and Beloussov, 1990).

5. Beloussov suggests that it is a particular contact cell polar-
ization wave, not all, that leads to cell differentiation (Beloussov,
1982), whereas every differentiation wave observed so far corre-
lates with a step of differentiation (Gordon et al., 1994).

6. Beloussov (Beloussov, 1998) suggests that
morphomechanics provides a solution to the problem of generally
decreasing symmetry as an embryo develops. However, the
same objection that | raised to Turing diffusion/reaction mecha-
nisms (Turing, 1952) applies: there are multiple choices for
symmetry breaking ateach step (§ 1.09in Gordon, 1999). (Turing
(Turing, 1952) in fact considered a mechanical alternative to his
primarily chemical model for symmetry breaking: § 1.15 in Gor-
don, 1999).

There are enough distinctions between contact cell polariza-
tion waves, which are of two distinct types (parallel and perpen-
dicular to an epithelial surface (Beloussov, 1998)) and differentia-
tion waves, to suggest that both (or all three) exist as separate
phenomena. For example, the unexplored 50% apical area reduc-
tion of the neural plate as it changes from a hemisphere to a flat
disk, certainly a massive columnarization (Figure 25 in Jacobson
and Gordon, 1976), may be a contact cell polarization wave.

We thus see that the two contemporary approaches to me-
chanics in cell differentiation in embryos have much in common
and need to be brought into one framework. They both show a
central role for mechanics in embryogenesis. Thus mechanics in
embryogenesis is hardly an irrelevant epiphenomenon.

Stem cells and developmental mechanics

The differentiation tree may be a useful guide to how to
produce replacement tissues for our bodies. The egg could be our
clone. Instead of using it to produce a whole infant and sacrificing
it for parts (a bioethics nightmare), the undifferentiated egg could
be proliferated (as in embryonic stem cells) and the cells then
forced through a particular sequence of contractions and expan-
sions. Such a “tissue synthesizer”, following a specified differen-
tiation code (Bjorklund and Gordon, 1994) might turn all the
cloned cells into the one needed replacement tissue and rational-
ize the current cookbookery of how to get stem cells to differen-
tiate the way we want them to. Of course, since each mechanical
event of contraction or expansion of the apical surface of the cell
is actually a mechanochemical event, we may find ways to
intervene and accomplish execution of the differentiation code
biochemically. The role of mechanics in stem cells is a burgeoning
field, suggesting that its role may indeed be more than incidental
(Wang et al., 2001, Banting et al., 2005; Kobayashi et al., 2004;
Park et al., 2004; Roeder et al., 2005; Yamamoto et al., 2005;
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Bakker et al., 2004; Kawanishi and Oikawa, 2004; Schild and
Trueb, 2004; Marquez et al., 2004; Cui et al., 2004; Barkhausen
etal.,2003; Naka et al., 2004; Berry et al., 2003; Yamamoto et al.,
2003; Simmons et al., 2003; Yoshino et al., 2003; Wan et al.,
2003; Sambajon et al., 2003; van Griensven et al., 2003; Altman
et al., 2002; Pearson, 2003).

Impact on embryonics

Embryonics starts from the laudable goal that computers that
grow by processes similar to embryos would be worth having for
self-replication and self-repair (Sipper et al., 1997a,b; Mange et
al., 1999, 2000; Restrepo et al., 2000; Sipper, 2002). However,
the computers envisaged are rather stiff and unlifelike: “...the
ultimate goal is to use huge chessboards —with billions of cells...”,
not at all like the liquid metal T-1000 robot in the movie Terminator
2: Judgment Day (1991). This is perhaps because embryonics
has been based on one particular, perhaps erroneous model for
embryo development: the concept of positionalinformation, which
requires a coordinate system for cells, an ability of each cell to
determine its coordinates and a means of decoding what it is
supposed to do by “looking up” those coordinates in its genome
(Proposition 35 in (Gordon, 1999): “positional information does
not exist”). Differentiation waves, by contrast, require only that a
cell’'s genome respond to the sequence of contraction and expan-
sion waves that the cell participates in. It need not know where it
is at all. Waves in an active medium (Markin et al., 1987; Scott,
1970; Villar et al., 1996), which include differentiation waves, can
be simulated ontwo and three dimensional tessellations (Gerhardt
et al., 1990), but this is not essential: they can also propagate
through a more flexible, less organized sheet, volume or spatial
network of units with the same or better global effect (Markus,
1990, 1999).

It seems to me that an alternate physical model of computers
is needed. Two kinds of computers are being developed that, if
they were combined with the embryonics approach, might yield a
better approximation to a growing, differentiating embryo. Modu-
lar robots are made of units that have motors and can configure
and reconfigure themselves in many ways (Yim et al., 2002),
going beyond simpler segmented robots (Hirose, 1993; Menzel
and D’Aluisio, 2000). The other technology that is rapidly being
developed is the wearable computer, building circuitry right into
clothing (Mann, 2002; Mann and Hall Niedzviecki, 2002), one
form of flexible electronics (Dorsch, 2001).

The modular robot units are 5 cm wide, but could be shrunk
(Yim et al., 2002). A modular robot rearranges the units it has, but
does not build new units from smaller components. Neither do
cells. They, rather, double their essential components and then
separate the components into two daughter cells. This takes a
degree of internal flexibility that goes beyond present flexible
electronics.

A new thrust into direct three dimensional growth of
nanotechnology starting with single celled algae called diatoms
(Gordon and Aguda, 1988; Gordon et al., 2005a)could help unite
the field of cellular microrobotics (Fukuda and Ueyama, 1994)
with embryonic robotics. An alternative approach would be to
incorporate living cells into the electronics (Potter and DeMarse,
2001; Potter, 2001).

Robotics brings mechanics into computing. Embryonics brings
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the idea of imitating growth and differentiation into computing. |
have shown that mechanics may be an essential component of
real life embryos, so perhaps we should reach for embryonic
robotics as the next goal, perhaps a little beyond what Wilhelm His
imagined:

“But we must go further in our propositions. Embryology and
morphology cannot proceed independently of all reference to the
general laws of matter, - to the laws of physics and of mechanics.
This proposition would, perhaps, seem indisputable to every
natural philosopher; but, in morphological schools, there are very
few who are disposed to adopt it with all its consequences” (His,
1888).
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