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ABSTRACT  Trophoblastic cell fusion is one essential step of the human trophoblast differentia-

tion pathway and is a multifactorial and dynamic process finely regulated and still poorly known.

Disturbances of syncytiotrophoblast formation are observed in numerous pathological clinical

conditions such as preeclampsia, intrauterine growth retardation and trisomy 21. In this review,

we summarize current knowledge of the different membrane proteins directly involved in

trophoblastic cell fusion, which we identified by using the physiological model of primary culture

of villous trophoblastic cells. Connexin 43 and gap junctional intercellular communication point

to the role of molecular exchanges through connexin channels preceding membrane fusion. Zona

occludens-1, which can interact with connexin 43, is also directly involved in trophoblast fusion.

The recently identified fusogenic membrane retroviral envelop glycoproteins syncytin 1 (encoded

by the HERV-W gene) and syncytin 2 (encoded by the FRD gene) and their receptors are major

factors involved in human placental development . We describe the increasing number of factors

promoting or inhibiting trophoblast fusion and differentiation and emphasize the role of human

chorionic gonadotropin (hCG) and its receptor.  Indeed, in trisomy 21 the dynamic process leading

to membrane fusion is impaired due to an abnormal hCG signaling.  This abnormal trophoblast

fusion and differentiation in trisomy 21-affected placenta is reversible in vitro. Trisomy 21

trophoblastic cell culture  may therefore be useful to identify the possible large number of

prerequisite factors involved in trophoblast fusion, the limiting step of trophoblast differentiation.
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In the human placenta, the trophoblast differentiates along two
major pathways both critical for normal placental functions
(Benirschke and Kaufmann, 2000). In the extravillous trophoblast
invasive pathway, the cytotrophoblastic cells of the anchoring villi
in contact with the uterus wall proliferate, detach from the base-
ment membrane and aggregate into multilayered columns of non-
polarized cells that invade the uterus wall (Fig.1). These cells,
which compose the extravillous cytotrophoblast (ECT), invade
the endometrium, the first third of the myometrium and the
associated spiral arterioles. In the villous trophoblast pathway,
the cytotrophoblastic cells (CT) of the floating villi proliferate,
differentiate and fuse to form a syncytiotrophoblast (ST) that
covers the entire surface of the villi (Fig.1). The syncytiotropho-
blast layer plays a major role throughout pregnancy, since it is the
site of numerous placental functions, including ion and nutrient
exchange and the synthesis of steroid and peptide hormones
required for fetal growth and development (Eaton and Contractor,
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1993; Ogren and Talamentes, 1994). Among them, progesterone
and hCG (human Chorionic Gonadotropin) are absolutely re-
quired for human gestation. Therefore, disturbances of syncy-
tiotrophoblast formation or functions are observed in pathological
clinical conditions such as preeclampsia (Langbein et al., 2008)
and trisomy 21 (Frendo et al., 2004; Frendo et al., 2000b; Massin
et al., 2001; Pidoux et al., 2007a; Pidoux et al., 2004b) and may
be implicated in abnormal fetal growth and development.

The multinucleated syncytiotrophoblast is regenerated along
pregnancy by a continuous turnover process including prolifera-
tion of mononuclear CT followed by the induction of early stages
of apoptosis and fusion of these CT into ST. Apoptotic progres-
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sion in the ST leads to the accumulation of condensed nuclei into
syncytial knots and the shedding of these aggregates into the
intervillous spaces. Syncytiotrophoblast formation can be repro-
duced in vitro using different models. Choriocarcinoma cells, ie
BeWo cells, are able to fuse in presence of cAMP to form a
multinucleated syncytium. However, the last step of differentiation,
the gathering of nulei into a central mount, is missing. In addition,
these cells are transformed and some trophoblastic functions are
not present (King et al., 2000). Denude villous explants from early
placenta allow to follow the in vitro ST repairing. In this model, the
cell-cell interactions are present, but cell-cell communication stud-
ies and quantification of trophoblastic hormones are difficult to
assess. Purified villous CT, cultured on plastic dishes, aggregate
and fuse forming the multinucleated ST (Fig. 2A) with pregnancy
specific hormonal production (ie hCG, Progesterone) (Kliman et
al., 1986). This model allows accurate biochemical studies.

Due to the key role of trophoblastic cell fusion in human
pregnancy, we tried to identify the membrane proteins directly
implicated in the ST formation (in normal and pathological condi-
tions) using the physiological model of villous trophoblastic cells
primary culture. The Trisomy 21 (T21) affected trophoblast model
of abnormal fusion and differentiation allowed us to unravel the
major factors involved in these processes.

Membrane proteins involved in trophoblastic cell fu-
sion

Before two cells can fuse, several steps are needed. Firstly, the
cells must leave the proliferative stage and express genes and

proteins involved in the fusion process. Secondly, they must
recognize and interact to their fusion partner. Thirdly, the cells must
communicate together, allowing signals exchange. Lastly, they
can fuse. Therefore, this dynamic process may be finely regulated
and coordinated.

The identification of a protein directly involved in trophoblastic
cell fusion, requires not only the localization of this protein at the
membrane level during one step of the process, but also to
demonstrate that the knock-down of it synthesis (siRNA or antisense
strategy) induces an inhibition or a decrease of trophoblastic cell
fusion.

During last years, we used the physiological model of villous CT
primary culture to analyze the expression and the role of different
membrane proteins in trophoblast fusion. Cells were isolated from
first, second trimester and term placentas. Protein expression,
mRNA and cellular localization of connexin 43, zona occludens-1
(ZO-1), syncytin 1 (HERV-W envelop glycoprotein) and syncytin 2
(HERV-FRD envelop glycoprotein) were analyzed during the dif-
ferent steps of villous trophoblastic cells differentiation: isolated
cells, aggregated cells, fused cells.

Connexin 43 and Gap Junctional Intercellular Communication
(GJIC)

Gap junctions are clusters of trans-membrane channels com-
posed of connexin (Cx) hexamers. Gap junctions provide pathway
for the diffusion of ions and small molecules such as cAMP, cGMP,
inositol triphosphate and Ca2+. Connexins represent a family of
closely related membrane proteins, which are encoded by a
multigene family that contains at least 20 members in humans.
These connexins have different biophysical properties, functional
and regulatory characteristics (Willecke et al., 2002). The perme-
ability of junctional channels is finely regulated. This regulation
involves the cyclic phosphorylation and dephosphorylation of
connexins and changes in intracellular Ca2+, H+ and cAMP. The
exchange of molecules through gap junctions is thought to be
involved in the control of cell proliferation, in the control of cell and
tissue differentiation, in metabolic cooperation and in spatial
compartimentalization during embryonic development (Bani-
Yaghoub et al., 1999; Lecanda et al., 1998; Loewenstein, 1981;
Saez et al., 1993). Furthermore other effects of connexins expres-
sion have been attributed to the interaction of Cx to the intracellular
signal cascades via the carboxy-terminus (Herve et al., 2004).

We have previously demonstrated, both in situ and in vitro the
expression of Cx43 mRNA in villous trophoblast and the localiza-
tion of Cx43 protein between CTs and between CTs and ST
whereas Cx26, Cx32, Cx33 and Cx40 were not detected. Further-
more, using fluorescence recovery after photobleaching method
(gap-FRAP) we demonstrated the presence and the requirement
of a functional inter trophoblastic communication via gap junctions
(Cronier et al., 1994; Malassine and Cronier, 2005). Futhermore,
cultured CT treated with Cx43 antisense aggregate and fuse
poorly. This treatment dramatically reduces the percentage of
coupled cells as demonstrated by the gap-FRAP method (Frendo
et al., 2003a). This demonstrates that the molecular exchanges
through connexins channels, preceding membrane fusion, are one
essential step for trophoblastic cell fusion.

Zona occludens-1 (ZO-1)
Secondary proteins interacting with connexins have been iden-

Fig. 1. Schema of human chorionic villi. In humans, at 10-12 weeks of
pregnancy, the chorionic floating villi are in contact with the maternal
blood in the maternal blood space (MBS). In these villi, cytotrophoblastic
cells (CT) differentiate by fusion to generate the syncytiotrophoblast (ST).
In the anchoring villi the cytotrophoblastic cells proliferate and invade the
decidua (DC). The extravillous cytotrophoblastic cells (ECT) invade the
uterine stroma and differentiate into multinucleated giant cells and
invade also the lumen of uterine arteries (UA). FC, fetal capillary; M,
mesenchyme.
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tified: chaperones, scaffolding proteins, kinases, phosphatases,
cells signaling molecules (for review see Herve et al., 2004).
Among these partner proteins, zona occludens-1 (ZO-1) has
been demonstrated to interact with multiple connexins. ZO-1 is a
220 kDa peripheral membrane protein, which has been originally
identified in association with tight junction (Anderson et al., 1988;
Stevenson et al., 1986) and later at adherens junction. ZO-1
contains multiple protein interaction domains including three
PSD95/Dlg/ZO-1 (PDZ) domain and a Src homology 3 (SH3)
domain (Anderson et al., 1988; Beatch et al., 1996; Itoh et al.,
1993; Willott et al., 1993). A recent study using nuclear magnetic
resonance method, demonstrated that the interaction of Cx43

with ZO-1 occurs through the last 20 amino acids in the extreme
carboxyl terminus of Cx43 and the second PDZ domain of ZO-1
(Giepmans and Moolenaar, 1998; Sorgen et al., 2004). Divergent
roles have been proposed for the interaction of ZO-1 and Cx43.
Changes in Cx43-ZO-1 interaction have been noted during re-
modeling of gap junctions in different cell types (Barker et al.,
2002; Defamie et al., 2001; Segretain et al., 2004). Modulation of
Cx43 and ZO-1 interactions may also be involved in gap junction
formation, localization and activity (Duffy et al., 2004; Giepmans
et al., 2001; Hunter et al., 2005; Sorgen et al., 2004; Toyofuku et
al., 2001). A role in internalization and remodeling of Cx43 in
response to intracellular changes (Barker et al., 2002) and in
targeting for endocytosis (Segretain et al., 2004) was also dem-
onstrated.

Therefore, we have investigated the role of ZO-1 in the tropho-
blastic cell fusion process. In situ, ZO-1 and Cx43 immuno-
colocalized at some intercellular boundaries, between CTs and
between CTs and ST. During in vitro trophoblast differentiation
ZO-1 was localized only at the intercellular boundaries of aggre-
gated cells and its expression decreased. Cx43 expression had
the same localization but its expression increased during differen-
tiation. Cx43 and ZO-1 co-localized only at some intercellular
boundaries of aggregated cells (Fig. 2B left panel). Moreover, by
using co-immunoprecipitation experiments, a physical interaction
between ZO-1 and Cx43 was demonstrated. To determine a
functional role for ZO-1 during trophoblast differentiation a siRNA
strategy was used to knock-down ZO-1 expression. CTs treated
with ZO-1 siRNA aggregated but fused poorly and less hCG
secretion was detected. Furthermore, Cx43 expression was de-
creased in ZO-1 siRNA treated CTs. Moreover, this treatment did
not alter the functionality of trophoblastic cell-cell communication
assessed by Gap-Frap method. These results demonstrate that
ZO-1 expression is required for trophoblastic cell fusion.

Fusogenic membrane retroviral envelop glycoproteins:
syncytin 1 and 2

Human endogenous retroviruses (HERV) comprise approxi-
mately 8% of the human genome (de Parseval and Heidmann,
2005; Lander et al., 2001). Most of the identified elements are
defective due to mutations and/or deletions within their genes, but
some elements have conserved intact open reading frames. A
systematic search for non-defective endogenous retrovirus enve-
lope genes has led to the identification of 16 genes (de Parseval
et al., 2003). Among them two can induce cell-cell fusion when
expressed in different cells and are highly and specifically ex-
pressed in the human placenta (Blaise et al., 2003; Blond et al.,
2000; Mi et al., 2000).

The products of these two genes are glycoproteins named
HERV-W Env glycoprotein (syncytin 1) and HERV-FRD Env
glycoprotein (syncytin 2). Syncytin 1 and syncytin 2 originate from
distinct retroviral elements, and disclose several differences.
Syncytin 2 entered the primate genomes earlier than syncytin 1,
namely before the split between New World and Old World
Monkeys (i.e > 40 Myrs ago), whereas syncytin 1 entered about
25 Myrs ago, being not found in Old World Monkeys. Yet, both
genes remained functional in all the corresponding primate
branches, thus strongly suggesting selection for a physiological
role. Syncytin 1 and syncytin 2 also differ by their receptor (still not
identified for syncytin 2), as demonstrated by ex vivo cell-cell

Fig. 2. Evolution of membrane protein expression during in vitro

differentiation of trophoblastic cells isolated from normal placenta.

(A) Morphological differentiation of isolated cytotrophoblast cultured on
plastic dishes. After one day, pseudopodia of CT are making contact with
neighboring CT. After two days, CT are mainly aggregated. After three
days, large syncytiotrophoblast (ST) are observed with central nuclear
mounts. (B) Immuno-colocalization of Cx43 (green fluorescence) and ZO-
1 (red fluorescence) on aggregated CT at 48 hours of culture. (C)

Immunostaining of syncytin 2 on aggregated CT at 48 hours of culture.
Staining is observed in some CT with a stronger staining at intercellular
sites. Scale bars: 10 μm. (D) Real-time RT-PCR analysis of syncytin 1,
syncytin 2, ZO-1 and Cx43 mRNA during in vitro differentiation of
trophoblastic cells. Datas are expressed as the level of each mRNA
normalized to that of RPL-P0 mRNA.
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fusion assays using different cell types. In addition it has been
shown recently that syncytin 2 is immunosuppressive and
syncytin 1 is not (Mangeney et al., 2007).

We first demonstrated using monoclonal and polyclonal
antibodies that in situ syncytin1 is immunolocalized in all cell
type of human trophoblast: villous and extravillous trophoblast.
Syncytin 1 is fusogenic by interacting with the D type mamma-
lian retrovirus receptor (RDR) also known to be the neutral
amino acid transporter ATB0/ASCT2/SLC1A5. We showed that
the D type mammalian retrovirus receptor is also localized in
the various trophoblastic phenotypes (Malassine et al., 2005).

We analysed the involvement of syncytin 1 in the differentia-
tion of CT in culture. First, the syncytin 1 mRNA and glycopro-
tein expressions were found to increase with cell aggregation
and fusion and then to slightly decrease (Fig. 2C). Second, in
vitro stimulation of trophoblast cell fusion and differentiation by
cAMP is associated with a concomitant increase in syncytin 1
and hCG mRNAs and protein expression as well. Finally, we
demonstrated by using specific antisense oligonucleotides that
inhibition of syncytin1 expression lead to a decrease of tropho-
blast fusion and differentiation (Frendo et al., 2003b), hCG
secretion in the culture medium of antisense treated cells being
decreased by 5 fold. Furthermore the inhibition of trophoblast
fusion by overexpression of superoxide dismutatse 1 (SOD-1)
is associated with an absence of increase in HERV-W env
mRNA (Frendo et al., 2001; Frendo et al., 2000a).

All together, these results strongly support a direct role of
syncytin1 in human trophoblastic cell fusion and differentiation.
However, the co-localization of syncytin1 and its receptor in
trophoblastic cells that do not fuse (extravillous trophoblast)
(Muir et al., 2006) suggests that syncytin1 and its receptor
appear to be required but not sufficient for trophoblastic cell
fusion.

 We then studied the expression of syncytin2 in human
placenta. In situ, syncytin 2 immunolocalization is restricted to
some CT of the villous trophoblast. Furthermore, this localiza-
tion highlights the modification of CT shape from cuboïdal in
early placenta to flat with cytoplasmic processes in term pla-
centa (Malassine et al., 2008). In vitro, syncytin 2 is only
observed in some aggregated CTs, with stronger staining at
intercellular sites (Fig. 2C). Syncytin 2 transcript levels de-
crease significantly upon CT fusion into ST in culture (Fig. 2D).
Syncytin 2 is highly fusogenic when overexpressed by transfec-
tion in various cultured cells, however its role in villous tropho-
blastic fusion has not been yet demonstrated.

Kinetics of expression of Cx43, ZO-1 and syncytins
during syncytiotrophoblast formation

Expression of these proteins at the right time to correct place
is a challenge for the CT fusion. Therefore the evolution of
Cx43, ZO-1 as well as syncytin 1 and 2 expression was
analyzed during in vitro trophoblast differentiation.

As shown in Fig. 2C it appears that syncytin 2 and ZO-1 are
highly expressed in isolated CTs and their expression rapidly
decrease during ST formation. On the other hand, syncytin1
and Cx43 mRNA increase with cell aggregation and fusion and
then slightly decrease. Proteins expression follows the same
pattern (data not shown). These results are in agreement with

the fact that Cx43 and ZO-1 are mainly co-localized during the
aggregation stage at 48 hours of culture. In addition, these
results illustrate the striking difference in syncytin1 and 2
localization: syncytin 2 only in some CT and syncytin 1 in all CT
and ST.

Fig. 3. Evolution of membrane protein expression during in vitro

differentiation of trophoblastic cells isolated from trisomy 21-af-

fected placenta. (A) Microscopic morphology of second trimester
chorionic villi of normal placentas (19 weeks of amenorrhea) and trisomy
21-affected placentas (18 weeks of amenorrhea). In normal placenta, a
large amount of cytotrophoblastic cells (CT) have fused into a thin
multinucleated syncytiotrophoblast (ST). In trisomy 21 placenta, many
cuboidal cytotrophoblastic cells (CT) are still present beneath the syncy-
tiotrophoblast (ST) increasing the thickness of the trophoblastic layer.
Scale bar = 10 μm. (B) Morphological differentiation during in vitro
culture of normal and T21 trophoblastic cells. Cytotrophoblastic cells
were purified from three distinct age matched (second trimester) normal
and T21-affected placentas and separately cultured. The cells were
visualized under phase contrast light microscopy (Scale bar = 10 μm). At
72 h, normal cytotrophoblastic cells had fused resulting in the formation
of a large syncytium containing numerous nuclei. In contrast, T21
cytotrophoblasts were still aggregated and had not fused. (C) Real-time
RT-PCR analysis of syncytin 1, syncytin 2, ZO-1 and Cx43 mRNA during
in vitro differentiation of T21 trophoblastic cells. Total mRNA were
extracted after 24 and 72 h of culture. Data are expressed as the level of
each mRNA normalized to that of RPL-P0 mRNA.
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Trisomy 21 as a model of abnormal human trophoblast
fusion and differentiation

Trisomy of chromosome 21 (T21), which causes the pheno-
type known as Down syndrome, is the major known genetic cause
of mental retardation and is found in around 1:800 live births. Little
is known about placental development in this aneuploid condition.
However, a defect in syncytiotrophoblast formation in T21-af-
fected placentas is observed. Cultured cytotrophoblasts, isolated
from T21-affected placentas, aggregate but fuse poorly or belat-
edly (Frendo et al., 2000b; Massin et al., 2001). This is in
agreement with previous histological observations pointing to an
increased percentage of two layered trophoblast in T21 placentas
(Oberweiss et al., 1983; Roberts et al., 2000) (Fig. 3A). In addition,
we demonstrated that this in vitro defect or delay in syncytiotro-
phoblast formation is characterized by a dramatic decrease in the
synthesis of syncytiotrophoblastic pregnancy-associated hor-
mones (Pidoux et al., 2004a) and by the secretion of an
hyperglycosylated hCG with low bioactivity (Frendo et al., 2004).
This abnormal trophoblast fusion implicates at least in part over-
expression of SOD-1 (Frendo et al., 2002). In addition we recently
showed that during the second trimester of pregnancy, syncytin 2
is immunolocalized in some cuboidal CTs in T21 placentas,
whereas in normal placentas it is observed in flat CTs extending
into their cytoplasmic processes. These results highlight the
abnormal trophobalst differentiation observed in trisomy 21 af-
fected placentas.

 As shown in figure 3B, CT isolated from T21 affected placenta,
aggregate normally but do not fuse or fuse poorly. In these cells,
transcript levels of Cx 43, ZO-1, syncytin1 and 2 do not vary with
time in culture (Fig. 3C). Proteins expression follows the same
pattern (data not shown).

In contrast, in normal CT the decrease of ZO-1 and syncytin1
and the increase of Cx43 and Syncytin 2 expression are associ-
ated with cell-cell fusion. This highlights that the timely regulated
expression of these proteins seems to be required for normal
trophoblast fusion.

Other factors involved in trophoblastic cell fusion

During last years, in different in vitro models such as BeWo
cells and explants culture other factors have been described to be
directly involved in trophoblastic cell fusion: the phosphatidylserine
(Adler et al., 1995), cadherin 11 (Getsios and MacCalman, 2003),
CD 98 (Dalton et al., 2007), caspase 8 (Black et al., 2004),
ADAMs12 (Huppertz et al., 2006). Phosphatidylserine flip is a
phospholipid normally confined to the inner layer of the plasma

membrane but prior to fusion this translocates to the outer layer
and facilitates inter-membrane fusion. According to Huppertz and
Kingdom (Huppertz and Kingdom, 2004), this phosphatidylserine
flip is a consequence of activation of initiator caspase (caspase 8)
leading to the concept that the molecular machinery of early
apoptosis is involved in the fusion process. ADAM 12 (meltrin
alpha) is a disintegrin and metalloprotease involved in myoblast
fusion and CD 98 is an integral membrane protein with N-linked
glycosylation sites known to be important for adhesion, aminoacid
transport and cell-cell fusion as well as virus induced cell fusion.
Manipulations of CD98 expression by antisense oligonucleotide
and small interfering RNA affect both amino acid transport and
cell fusion in BeWo cells (Kudo et al., 2003). Furthermore, primary
CTs cultured in the presence of antisense oligonucleotides spe-
cific for cadherin-11 a cell adhesion molecule, do not undergo
terminal differentiation and fusion with time in culture (Getsios
and MacCalman, 2003). In the present study we show for the first
time that the expression of some factors required for trophoblast
fusion are timely regulated. Indeed it is conceivable that cells must
be joined by tight junctions and adherens junctions prior to
establish gap junctions, gap junctionnal communication and to
initiate membrane fusion. This latest process is facilitated by the
syncytins which might form bundles of alpha-helices similar to the
class 1 viral fusion protein that bring membranes close together
(Larsson et al., 2008).

On the other hand, an increasing number of factors promoting
or inhibiting trophoblastic cell fusion and differentiation is de-
scribed through the literature and summarized in Table 1. They
are described to modulate in vitro the ST formation in primary
cultures of villous CT, and they illustrate the numerous signaling
pathways implicated in trophoblast differentiation. However little
is known on the role of these soluble factors on the expression, the
membrane localization and /or the interaction of the different
identified partners of cell fusion.

Among these factors, hCG might be the major one. Since the
study of Shi et al. (Shi et al., 1993) demonstrating that hCG has
a direct role in trophoblast differentiation, different studies have
confirmed the importance of hCG and its membrane receptor in
syncytiotrophoblast formation (Pidoux et al., 2007a; Pidoux et al.,
2007b; Shi et al., 1993). The hCG receptor, which has seven
transmembrane domains, belongs to the superfamily of G pro-
tein-coupled receptors (Loosfelt et al., 1989; McFarland et al.,
1989; Minegishi et al., 1990; Pierce and Parsons, 1981). HCG
binding to its receptor activates adenylate cyclase, phospholi-
pase C and ion channels, which in turn control cellular cAMP,
inositol phosphates, Ca2+ and other secondary messengers
(Gudermann et al., 1992; Hipkin et al., 1992). Agents increasing

Stimulation action Inhibiting action 

EGF (Alsat et al., 1993; Morrish et al., 1987) 

hCG (Cronier et al., 1994; Shi et al., 1993) 

cAMP (Cronier et al., 1997b; Keryer et al., 1998) 

GM-CSF (Garcia-Lloret et al., 1994) 

Macrophages and macrophage-conditionned media (Cervar et al., 1999; Khan et al., 2000) 

Dexamethasone (Cronier et al., 1998) 

Estradiol (Cronier et al., 1999b) 

TGF-β1 (Cronier et al., 1997a; Morrish et al., 1991) 

 

LIF (Nachtigall et al., 1996) 

Hypoxia, SOD-1 (Alsat et al., 1996; Frendo et al., 2001; Frendo et al., 2000a; Levy et al., 2000) 

Endothelin (Cronier et al., 1999a) 

15ΔPGJ2 (Levy et al., 2000) 

TNFα (Leisser et al., 2006) 

TABLE 1

MAIN FACTORS MODULATING TROPHOBLASTIC CELL FUSION AND DIFFERENTIATION IN VITRO
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cellular levels of cAMP promote cytotrophoblast fusions in vitro
(Keryer et al., 1998) and also elevate mRNA levels of syncytin1
in cultured trophoblasts (Frendo et al., 2003b). Interestingly
syncytin 1 was shown to be a target gene of GCMa, a placenta
specific transcription factor that is required for placental develop-
ment in mouse (Schreiber et al., 2000). GCMa, which possesses
two PKA phosphorylation sites might be phosphorylated by PKA
inducing a stimulation of its transcriptional activity and therefore
syncytin1 expression (Knerr et al., 2005).

Interestingly, we recently demonstrated that Trisomy 21 af-
fected trophoblastic cells produce abnormally glycosylated forms
of hCG with low biological activity (Frendo et al., 2004). Further-
more, these cells express a low number of hCG/LH receptors
(Pidoux et al., 2007a). Endly, we demonstrated that the in vitro
defect of ST formation in T21 is reversible when CT are treated
with biosynthetic hCG (Pidoux et al., 2007a). These results
confirm in a pathological model the major role of hCG and its
receptor in trophoblast fusion and differentiation.

Concluding remarks

Trophoblast fusion is one essential step of the trophoblast
differentiation pathway and is a multifactorial and dynamic pro-
cess finely regulated and still poorly known. We and others are
just at the beginning of the identification of possibly a large
number of prerequisite factors for this process. The recently
identified retroviral envelop glycoproteins (syncytins), highly
fusogenic proteins, appear to play a major role. Identification of
syncytin 2 receptor will allow us a better understanding of its exact
role in placental development. In addition our results point to the
fact that abnormal trophoblast fusion and differentiation in T21-
affected placenta is reversible in vitro.
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