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ABSTRACT  Trophoblast giant cells (TGCs) are the first cell type to terminally differentiate during

embryogenesis and are of vital importance for implantation and modulation of post-implantation

placentation. TGCs are mononuclear and polyploid but are heterogenous and dynamic. At least

four different subtypes of TGCs are present within the mature placenta that have distinct cell

lineage origins. The development of TGCs is complex and requires transition from the mitotic to

the endoreduplication cell cycle and is regulated by a wide variety of factors. During early

gestation, TGCs mediate blastocyst attachment and invasion into the uterine epithelium, regulate

uterus decidualization, and anatomosis with maternal blood spaces to form the transient yolk sac

placenta. During later gestation, TGCs secrete a wide array of hormones and paracrine factors,

including steroid hormones and Prolactin-related cytokines, to target the maternal physiological

systems for proper maternal adaptations to pregnancy and the fetal-maternal interface to ensure

vasculature remodeling. The large number of mouse mutants with defects in TGC development

and function are giving us significant new insights into the biology of these fascinating cells.
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The enigmatic life of the trophoblast giant cell

Trophoblast giant cells (TGCs) are the first terminally differen-
tiated cell type to form during embryogenesis in rodents and are
of vital importance for embryo implantation and promoting mater-
nal adaptations to pregnancy. They arise from the trophectoderm
layer in the blastocyst (Fig. 1), are endocrine in nature and
characterized by their extremely large cytoplasm and polyploid
nuclei that result from endoreduplication (Zybina and Zybina,
1996). TGCs are best studied in rodents and are usually mono-
nucleated. In mice, there are several subtypes of TGCs with
distinct functions that arise at different stages of gestation and in
different locations within the placenta (Simmons et al., 2007;
Simmons et al., 2008b). Mono-nucleated, bi-nucleated or occa-
sionally multi-nucleated cells with polyploid nuclei have also been
identified in the rabbit, vole, fox, human, cow, water buffalo and
alpaca placenta (Carvalho et al., 2006; Klisch et al., 2005; Klisch
et al., 1999; Klisch et al., 2004; Zybina et al., 1975; Zybina and
Zybina, 1985; Zybina et al., 1992; Zybina et al., 2004; Zybina et
al., 2002; Zybina et al., 2001). In humans, the polyploid cells are
the so-called extravillous cytotrophoblast cells that invade into the
uterus (Zybina et al., 2002) and are associated with remodeling of
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the spiral arteries (Pijnenborg et al., 1980). In addition to polyp-
loidy, many genes that are involved in TGC development and
function in rodents are conserved between rodents and humans,
such as transcription factors, proteases and cell adhesion mol-
ecules (Cross et al., 2003; Rawn and Cross, 2008). Therefore,
studies of TGCs should give insights into human gestational
diseases that are associated with extravillous cytotrophoblast
cells such as preeclampsia and intrauterine growth restriction
(Brosens et al., 1977; Brosens et al., 1972). We review here the
development and functions of TGCs focusing on insights from
mice, discussing the differences between TGC subtypes and
implications of their diverse functions.

Characteristics, origins and regulation of TGC devel-
opment

The mature placenta in rodents is composed of three broad
zones including the maternal decidua on the outside, the junc-

Abbreviations used in this paper: TGC, trophoblast giant cell; C-TGC, matrnal
blood canal associate TGC; P-TGC, parietal TGC; SpA-TGC, spinal artery
associated TGC.
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tional zone and the innermost labyrinth (Fig. 1). The decidua is
devoid of trophoblast cells until around mid-gestation when tropho-
blast cells invade both into the decidua and up the spiral arteries,
replacing the endothelium and thereby promoting the transition
from endothelial cell-lined to trophoblast cell-lined maternal blood
spaces (hemo-chorial) in the placenta (Adamson et al., 2002). The
junctional zone consists of spongiotrophoblast cells and a layer of
TGCs that line the implantation site. The labyrinth is the region in
which nutrient exchange occurs and the bulk of the trophoblast
compartment is composed of two layers of multi-nucleated syncy-
tiotrophoblast that arise from cell-cell fusion of post-mitotic cells
(Hernandez-Verdun and Legrand, 1975) and not endomitosis or
endoreduplication as with TGCs. Four TGC subtypes have been
identified in the placenta (Simmons et al., 2007), and include
parietal TGC (P-TGC) that line the implantation site and are in
direct contact with decidual and immune cells in the uterus, spiral
artery-associated TGCs (SpA-TGC), maternal blood canal-associ-
ated TGCs (C-TGC), and sinusoidal TGC (S-TGC) that are within
the sinusoidal blood spaces of the labyrinth (Figs. 1 and 2). The four
subtypes of TGCs are distinguished by their anatomical location
and gene expression (Table 1) (Simmons et al., 2007).

Characteristics of TGCs
All TGC subtypes share the characteristics that they are large,

have polyploid (usually single) nuclei, and are secretory in nature

with their content of golgi and endoplasmic reticulum increasing
during differentiation (Bevilacqua and Abrahamsohn, 1988). In
contrast to proliferating cells, TGCs undergo rounds of DNA
replication without intervening mitoses, a process called
endoreduplication, and can accumulate DNA up to 1000C (Zybina
and Zybina, 1996). The genome of P-TGCs is ‘polytene’, a state in
which many sister chromatids are synapsed together resulting
from multiple rounds of genome replication (Varmuza et al., 1988;
Zybina and Zybina, 1996). While the other subtypes of TGCs have
polyploid nuclei (Simmons et al., 2007), it is unclear whether their
nuclei are polytene. Consistent with their large cytoplasm and
extensive rough endoplasmic reticulum, TGCs secrete a variety of
proteins including extracellular matrix, cell adhesion molecules,
proteinases, cytokines and hormones (see below).

The importance of endoreduplication and polyploidy for TGC
function is a matter of speculation. Polyploid nuclei have been
identified in many plant and animal cells with secretory or nutritive
function such as salivary gland and follicle cells in Drosophila
melanogaster, and leaf cells in plants (Edgar and Orr-Weaver,
2001). It has been suggested that polyploidy may increase their
capacity for protein synthesis. Alternatively, since TGCs have a
relatively short lifespan, it may be that endoreduplication and the
associated cell hypertrophy allow tissue growth with less time and
energy expenditure. An extension of this hypothesis is that be-
cause TGCs are post-mitotic, they function without risk of forming

Fig. 1. Overview of placental structure in the mouse. Diagrams depict early development of the mouse conceptus at embryonic days (E) 3.5, 7.5
and 12.5, displaying the components of the mature placenta and different subtypes of TGCs. Abbreviations: Al, allantois; Am, amnion; Ch, chorion;
Dec, decidua; Emb, embryo; Epc, ectoplacental cone; ICM, inner cell mass; Lab, Labyrinth; pYS, parietal yolk sac; SpT, spongiotrophoblast; TGC,
trophoblast giant cell; Umb Cord, umbilical cord; vYS, visceral yolk sac. C-TGC, maternal blood canal trophoblast giant cell; P-TGC, parietal trophoblast
giant cell; S-TGC, sinusoidal trophoblast giant cell; SpA-TGC, spiral artery-associated trophoblast giant cell; Cyan-trophectoderm and trophoblast
lineage, Black-inner cell mass and embryonic ectoderm, Gray-endoderm, Red-maternal vasculature, Purple-mesoderm, Yellow-decidua, Pink-fetal
blood vessels in labyrinth.

Subtype  Location  Temporal appearance Gene expression Suggested function 

SpA-TGC Lining maternal spiral arteries bringing 
blood into placenta 

E10.5 Plf Regulate maternal spiral artery remodeling and blood flow into the placenta 

P-TGC Lining implantation site and outer layer of 
parietal yolk sac 

E7.5 Pl1, Pl2, Plf Facilitate implantation and initial maternal vascular connections, regulate 
decidual cell differentiation, and maternal physiology 

C-TGC Lining canals that bring maternal blood to 
base of labyrinth 

E10.5 Plf, Pl2 Regulate maternal vasculature remodeling and maternal physiology 

S-TGC Within maternal blood sinusoids of the 
labyrinth layer 

E10.5 Ctsq, Pl2 Modulation of hormone and growth factor activity before they enter fetal and/or 
maternal circulation, regulate maternal physiology 

 TABLE 1

CHARACTERISTICS AND FUNCTION OF THE FOUR DIFFERENT TGC SUBTYPES IN THE MATURE PLACENTA
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tumours (Hemberger, 2008). This is important
since TGCs have the ability to invade and promote
local angiogenesis (see below). Interestingly
though, TGC nuclei in voles become fragmented
during late gestation with sex chromosomes in
each sub-domain, and this suggests that there is
some structural order to the polyploid nuclei (Zybina
et al., 2005). The formal test of whether or not
polyploidy is critical for function is to analyze
mutants in which it does not occur.
Endoreduplication is compromised in cyclin E1/
E2-deficient mice but markers of TGCs are still
induced, indicating that endoreduplication and
differentiation are not linked (Geng et al., 2003;
Parisi et al., 2003).

Transformation of the mitotic cell cycle to the
endocycle in TGCs

Mechanisms concerning the initiation and main-
tenance of endoreduplication have been well stud-
ied in flies and plants (Edgar and Orr-Weaver,
2001; Larkins et al., 2001), though there are some
data from rodent TGCs as well (Fig. 3) (Hattori et
al., 2000; MacAuley et al., 1998; Nakayama et al.,
1998). The most obvious change in the cell cycle
is that S phase is dissociated from M phase. This
is not trivial since checkpoint controls normally
prevent initiation of DNA replication until comple-

origins of replication (Elledge, 1996). This includes degradation of
the protein Geminin which otherwise suppresses the firing of
origins of replication (McGarry and Kirschner, 1998). Geminin
mutant embryos die during pre-implantation development and
show ectopic endoreduplication in blastomeres (Gonzalez et al.,
2006). Another important mechanism to maintain periodicity during
the endocycle involves cyclic expression of p57Kip2, a G1/S Cdk
inhibitor (Hattori et al., 2000). When TGC differentiation is initiated,
p57Kip2 mRNA expression appears during the transition endocycle
(Fig. 3) (Hattori et al., 2000). During subsequent endocycles,
p57Kip2 protein levels fluctuate and this defines two phases: a

Fig. 2. Outline of the trophoblast cell lineage and origins of different TGC subtypes.

Micrographs of different trophoblast cell subtypes show high magnification views of
toluidine blue-stained plastic sections of the mid-gestation placenta. C-TGC, canal tropho-
blast giant cell; EPC, ectoplacental cone; F, fetal capillary; GlyTC, glycogen trophoblast cell;
M, maternal sinusoid blood space; P-TGC, parietal trophoblast giant cell; S-TGC, sinusoidal
trophoblast giant cell; SpA-TGC, spiral artery-associated trophoblast giant cell; SpT,
spongiotrophoblast; SynT-I & II, syncytiotrophoblast cell layers I and II.

Fig. 3. Overview of the expression and activity of cell cycle regulators that function
during the transition from the mitotic cell cycle to the endocycle associated with TGC
differentiation based on published data (Hattori et al., 2000; MacAuley et al., 1998;
Nakayama et al., 1998; Ullah et al., 2008).

tion of mitosis and entry into mitosis is prevented until completion
of S phase (Elledge, 1996). TGCs show other changes in check-
point controls such that they continue through DNA replication
even after sustaining DNA damage (MacAuley et al., 1998).

The G2 decision point: mitosis or endoreduplication?
In a mitotic cell cycle, cyclin B/Cdk1 promotes entry into mitosis

(Sherr and Roberts, 2004). The Rcho-1 trophoblast cell line has
been used to study TGC differentiation as precursor cells that have
committed to leave the mitotic cell cycle can be selected as a result
in a change in cell adhesiveness even before they have begun to
endoreduplicate (MacAuley et al., 1998). The transi-
tion occurs in the G2 phase but cyclin B/Cdk1 complex
is not activated due to reduced association of cyclin B
and Cdk1 (MacAuley et al., 1998). This is likely due to
the effect of the Cdk inhibitor p57Kip2 which has
recently been shown to inhibit Cdk1 activity during
TGC differentiation (Ullah et al., 2008). In the subse-
quent endocycle, cyclin B expression is suppressed
(MacAuley et al., 1998; Palazon et al., 1998). The zinc
finger transcription factor Snail regulates the ‘G2
decision point’ of whether trophoblast cells go through
mitosis or enter the endocycle (Fig. 3) (Nakayama et
al., 1998). Its precise mechanism is unknown but
over-expression of Snail increases expression of the
mitotic cyclins A and B (Nakayama et al., 1998).

Resetting the periodic S phases during
endoreduplication

During the mitotic cell cycle, biochemical events
coincident with mitosis lead to the re-setting of the



344    D. Hu and J.C. Cross

 Name Gene product Function Reference 

Trophoblast stem cell specification and maintenance 

Eomes T-box transcription factor Mutants die at peri-implantation stage, primary TGCs absent (Russ et al., 2000) 

Elf5 Ets transcription factor Mutants die by E8.5 with extraembryonic ectoderm absent, 
ectoplacental cone present 

(Donnison et al., 2005) 

Err2/Errβ Orphan nuclear receptor Mutants die by E9.5 with chorion absent, TGC number increased (Luo et al., 1997, Tremblay et al., 2001a) 

Foxd3 Forkhead transcription factor Mutants ie by E6.5 with TGC number increased (Tompers et al., 2005) 

AP-2γ AP-2 family of transcription factors Mutants die by E8.5 with trophoblast stem cells and ectoplacental cone 
reduced, Primary TGCs reduced 

(Auman et al., 2002, Werling and Schorle, 2002) 

Erf Ets domain transcriptional repressor Mutants die by 10.5 with persistence of ectoplacental cavity, failure in 
chorioallantoic attachement, expanded TGCs layer 

(Papadaki et al., 2007) 

Ets2 Ets transcription factor Mutants die by E8.5 with chorion absent and ectoplacental cone growth 
reduced and defective trophoblast stem cells self renewal 

(Yamamoto et al., 1998, Wen et al., 2007) 

Dp1 DP family transcription factor Mutants die by E12.5 with reduced chorion, fewer TGCs and TGCs with 
minimal nuclear enlargement 

(Kohn et al., 2003) 

FGF4 Fibroblast growth factor Mutants die shortly after implantation with failure to maintain trophoblast 
stem cells, premature TGC formation 

(Feldman et al., 1995, Tanaka et al., 1998) 

FGFR2 Fibroblast growth factor receptor 2 Mutants die shortly after implantation with failure to maintain trophoblast 
stem cells, premature TGC formation 

(Arman et al., 1998) 

Erk2 Extracellular signal-regulated kinase 2 Mutants die shortly after implantation, extraembryonic ectoderm and 
ectoplacental cone not formed  

(Hatano et al., 2003, Saba-El-Leil et al., 2003) 

Shp2 
 

Non-receptor protein-tyrosine phosphatase Mutants die at peri-implantation stage, trophoblast stem cells not 
generated 

(Yang et al., 2006)  

Nodal Transforming growth factor β superfamily 
member 

Mutants die by E9.5 with spongiotrophoblast layer reduced and TGC 
number increased 
 

(Guzman-Ayala et al., 2004, Ma et al., 2001) 

Activin Transforming growth factor β superfamily 
member 

Promotes maintenance of cultured trophoblast stem cells (Erlebacher et al., 2004) 

Tgf β Transforming growth factor β superfamily 
member 

Promotes maintenance of cultured trophoblast stem cells (Erlebacher et al., 2004) 

BMP2 Transforming growth factor β superfamily 
member 

Mutants die by around E8.5 with amnion/chorion defects caused by an 
open proamniotic canal 

(Zhang and Bradley, 1996) 

Acvr1b Activin/Nodal receptor 1B Mutants die by E9.5 with disorganized extraembryonic ectoderm  (Gu et al., 1998) 

Acvr2, Acvr2b Activin/Nodal receptor 2 and 2B Compound homozygous mutants die by E8.5 
 

(Song et al., 1999) 

Smad1 Intracellular transducer of TGF-β signals Mutants die by E10.5 with chorion erratically folded and allantois growth 
defects 

(Arnold et al., 2006, Lechleider et al., 2001, 
Tremblay et al., 2001b) 

mTOR Mammalian TOR (target of rapamycin) Mutants die shortly after implantation. Mutant trophoblast fails to 
proliferate in vitro. 

(Murakami et al., 2004) 

Ectoplacental cone and spongiotrophoblast maintenance 

Mash2 Basic helix-loop-helix transcription factor Mutants die by E10 with smaller ectoplacental cone and lack of 
spongiotrophoblast, TGC number increased, labyrinth layer reduced 

(Guillemot et al., 1994, Scott et al., 2000, Tanaka et 
al., 1997) 

Sp1,3 Zinc finger transcription factors Sp1-/- die by E10.5, Sp3-/- die postnatally, spongiotrophoblast layer 
decreased in Sp1/Sp3 compound heterozygous and Sp3-/- mutants 

(Kruger et al., 2007) 

PPAR β/δ nuclear receptor peroxisome proliferator-
activated receptor β/δ; lipid-activated 
transcription factors 

Mutants die by E10.5 with reduced spongiotrophoblast and TGC  (Nadra et al., 2006, Wang et al., 2007)  

HIF bHLH/PAS transcription factors composed of 
HIFα and HIFβ/Arnt subunits 

Arnt-/- and Hif1α-/- Hif2α-/- die by E10.5 with TGC number increased, 
smaller ectoplacental cone and reduced spongiotrophoblast 

(Abbott and Buckalew, 2000, Adelman et al., 2000, 
Cowden Dahl et al., 2005) 

Cited 1 CBP/p300-interacting transactivator  
 

Mutants die shortly after birth, spongiotrophoblast layer irregular in 
shape and enlarged 

(Rodriguez et al., 2004) 

Cited 2 CBP/p300-interacting transactivator  
 

Mutants die by E14.5 with reduced spongiotrophoblast, glycogen 
trophoblast cells and TGCs 

(Withington et al., 2006) 

Dnmt3L DNA methyltransferase 3-like protein Mutants die by E10.5 with TGCs number increased, spongiotrophoblast 
and labyrinth reduced 

(Arima et al., 2006) 

Keratin 8, 18, 19 Cytokeratin-intermediate filaments K8-/- die by E12.5, K8-/-K19-/- die by E10.5 and K18-/-K19-/- die by 
E9.5, all with altered TGCs 

(Hesse et al., 2000, Jaquemar et al., 2003, Tamai et 
al., 2000) 

Connexin 31 Connexin; Gap junction protein 60% mutants die between E10.5 and 13.5 TGC number increased, 
spongiotrophoblast and labyrinth decreased 

(Kibschull et al., 2004, Plum et al., 2001) 

Connexin 31.1 Connexin; Gap junction protein Mutants die by E14.5, compact spongiotrophoblast with increased 
thickness 

(Zheng-Fischhofer et al., 2007) 

Bruce BIR repeat-containing ubiquitin-conjugating 
enzyme 

Mutants in C57BL/6 background die perinatally with spongiotrophoblast 
reduced 

(Hitz et al., 2005, Lotz et al., 2004) 

HOP/NECC1 Homeodomain-only protein/not expressed in 
choriocarcinoma clone 1 (HOP/NECC1) 

Mutants have TGCs number increased, spongiotrophoblast reduced (Asanoma et al., 2007) 

Talin Cytoplasmic protein associated with integrin-
containing cellular junctions 

Mutants die by E9.5 with disorganized extraembryonic tissues and the 
ectoplacental and excocoelomic cavities are not formed 

(Monkley et al., 2000) 

TGC terminal differentiation 

Hand1 Basic helix-loop-helix transcription factor Mutants die by E8.5 with smaller ectoplacental cone, TGC number 
reduced and nuclear size reduced 

(Firulli et al., 1998, Riley et al., 1998, Scott et al., 
2000) 

Stra13 Basic helix-loop-helix transcription factor Over-expression stimulates TGC differentiation (Hughes et al., 2004) 

TABLE 2

GENES REGULATING TGC DEVELOPMENT
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endo-G2 phase with p57Kip2 accumulating upon completion of S
phase and an endo-G1 phase with p57Kip2 declining several hours
before entry into S-phase (Hattori et al., 2000). It is hypothesized
that periodic expression of p57Kip2 protein promotes alternating S
and gap phases during the endocycle.

Altered G1 to S checkpoint
A G1 to S checkpoint is present during the mitotic cell cycle to

ensure that chromosomes are intact before replication. At the G1
checkpoint, the Rb tumor suppressor protein is phosphorylated
by cyclin D/Cdk allowing the E2F transcription factor to be
liberated, which in turn drives the cell cycle into S phase (Sherr
and Roberts, 2004). The p53 tumour suppressor protein helps
cells to survey genotoxic damage and cooperates with Rb to
regulate G1 arrest (Sherr, 2000). During the transition from the
mitotic cell cycle to the endocycle in trophoblast cells, cyclin D
isoform expression switches from D3 to D1 (MacAuley et al.,
1998). Expression of p53 and Rb declines during TGC differentia-
tion whereas their forced over-expression inhibits differentiation
(Soloveva and Linzer, 2004). This altered G1 checkpoint control
might allow cells to go through repeated S phases without
intervening mitoses.

Maintenance of S phase cyclin/Cdk activities
Cyclin E promotes the G1 to S phase transition whereas cyclin

A promotes S phase progression (Sherr and Roberts, 2004), and
both cyclin A and E are expressed during endo-S phase (MacAuley

et al., 1998). Cyclin E1/E2-deficient mice show a reduced
endoreduplication in TGCs, indicating that cyclin E is essential for
endoreduplication (Geng et al., 2003; Parisi et al., 2003). Con-
versely, cyclin E levels are elevated in Fbw7 (Tetzlaff et al., 2004)
and Cul1 (Wang et al., 1999) mutants due to compromised cyclin
E degradation, and TGCs are larger than normal.

Cell lineage origins of different TGC subtypes
In addition to distinct localization and gene expression pat-

terns, the different subtypes have different lineage origins and
arise at different times during development (Fig. 2) (Simmons et
al., 2007). Some of the P-TGCs arise directly from the ~60 mural
trophectoderm cells in the blastocyst in a process called primary
TGC differentiation. However, most of the several hundred P-
TGCs that are present by mid-gestation, and all of the other
subtypes, arise from the polar trophectoderm through so-called
secondary TGC differentiation. Historically, it has been hypoth-
esized that secondary TGCs are derived from progenitor cells
within the ectoplacental cone and the spongiotrophoblast layers
that are Mash2 and Tpbpa/4311 positive (Simmons and Cross,
2005). However, lineage-tracing studies have shown that only
some TGC subtypes arise from Tpbpa-positive precursor cells
(Fig. 2) (Simmons et al., 2007). Both P-TGCs and C-TGCs have
mixed developmental origins. In contrast, all of the SpA-TGCs
originate from Tpbpa-positive cells, whereas all of the S-TGCs
arise from Tpbpa-negative precursors (Fig. 2). While Tpbpa-
positive precursors are located in the outer ectoplacental cone

I-mfa bHLH transcription factor repressor protein Mutants die by E10.5 in C57B1/6 background  
TGC number reduced 

(Kraut et al., 1998) 

Eed Polycomb group protein Mutants die by E11.5 with TGC number reduced, TGC nuclear size 
preferentially small in females 

(Wang et al., 2001) 

Snail Zinc finger transcription 
factor 

Over-expression suppresses TGC differentiation (Nakayama et al., 1998) 

Gata2,3 Zinc finger transcription 
factor 

Gata2 -/- die by E10 and Gata3-/- die by E11.5, TGCs with reduced 
hormone synthesis and indistinguishable cell number 

(Ma and Linzer, 2000, Ma et al., 1997) 

Sox15 Sry-type HMG box (Sox) transcription factor Ectopic expression of Sox15 promotes TGC differentiation (Yamada et al., 2006) 

LIF Leukemia inhibitory factor Administration promotes TGC differentiation in vitro and in vivo, genetic 
reduction in LIF rescues TGC phenotype in Socs3 null mutants 

(Robb et al., 2005, Takahashi et al., 2003, 
Takahashi et al., 2008) 

LIFR Leukemia inhibitory factor receptor Mutants die perinatally, TGC number reduced, spongiotrophoblast and 
labyrinth layers disorganized 

(Takahashi et al., 2003, Ware et al., 1995) 

Socs3 Suppressor of cytokine signaling protein Mutants die by E13.5 with TGC number increased, spongiotrophoblast 
and labyrinth layers reduced 

(Boyle and Robb, 2008, Robb et al., 2005, 
Takahashi et al., 2003) 

Jak1 Janus kinase 1; tyrosine kinase Mutants die perinatally, TGC number reduced and spongiotrophoblast 
cell number increased, labyrinth layer disorganized 

(Takahashi et al., 2008) 

Stat3 Signal transducer and activator of 
transcription 3 

Mutants die by E7.5 with TGC number decreased (Takeda et al., 1997) 

RXR 
 

Retinoid X receptors RXRα-/- die by E16.5 and RXRα-/-/RXRβ-/- compound homozygous die by 
E10.5, TGCs disorganized, spongiotrophoblast reduced, labyrinth layer 
absent 

(Sapin et al., 1997, Wendling et al., 1999) 

PTHrP Parathyroid hormone-related protein Promotes TGC differentiation in vitro 
Mutants die immediately after birth 

(El-Hashash et al., 2005, Karaplis et al., 1994) 

Fbw7 F-box protein component of an SCF (Skp1-
Cul1-F-box protein-Rbx1)-type ubiquitin 
ligase 

Mutants die by E10.5, TGC number increased 
TGCs, DNA synthesis increased 

(Tetzlaff et al., 2004) 

Chm Choroideremia (CHM); Rab escort protein-1 Mutants die by E11.5, TGC number increased, smaller ectoplacental 
cone and reduced spongiotrophoblast layer  

(Shi et al., 2004) 

CCNE1 and CCNE2 Cyclin E1, E2 Cyclin E1-/-E2-/- embryos die by E11.5, TGC nuclei have marked 
reduction in DNA content though TGC nuclear size not reduced 

(Geng et al., 2003, Parisi et al., 2003) 

p57Kip2 Cyclin-dependent kinase inhibitor Mutants die neonatally, spongiotrophoblast layer increased, TGC 
number not different  
Defines the length of the gap phase during endoreduplication 

(Hattori et al., 2000, Kanayama et al., 2002, 
Takahashi et al., 2000) 

p53 Tumour suppressor protein, transcriptional 
factor 

Mutants die postnatally, TGC number increased, spongiotrophoblast 
layer reduced 

(Komatsu et al., 2007, Soloveva and Linzer, 2004) 

Mfn2 Mitochondrial transmembrane GTPase Mutants die by E11.5, TGC number reduced, smaller TGC nuclear size (Chen et al., 2003) 

Geminin Nuclear protein that inhibits DNA replication  Mutants die at preimplantation stage, premature endoreduplication of 
'trophoblast-like' giant cells at eight cells stage 

(Gonzalez et al., 2006) 

TABLE 2 (CONTINUED)
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starting at ~E8.5 and later in the spongiotrophoblast, the source
of the Tpbpa-negative precursors is unknown but could be the
extraembryonic ectoderm/chorion trophoblast cells, inner ec-
toplacental cone cells, or both. The chorion has distinct layers of
cells by E8.5 that are thought to give rise to the three different
trophoblast cell layers in the labyrinth including two multinucle-
ated syncytiotrophoblast layers and S-TGCs (Fig. 1 and 2)
(Simmons et al., 2008a).

Regulators of TGC development
A variety of factors regulate TGC development (Table 2). After

implantation, the trophoblast lineage is maintained by prolifera-
tion of trophoblast stem cells that reside in the polar trophecto-
derm and that produce the bulk of the trophoblast lineage save for
~60 of the P-TGCs that derive from mural trophectoderm (Fig. 2).
The trophoblast stem cell pool is maintained by FGF4/FGFR2
(Arman et al., 1998; Tanaka et al., 1998) and Nodal (Guzman-
Ayala et al., 2004) signaling and the AP2γ (Auman et al., 2002),
Eomes (Russ et al., 2000), Err2 (Luo et al., 1997; Tremblay et al.,
2001a), Foxd3 (Tompers et al., 2005) and Elf5 (Donnison et al.,
2005) transcription factors. Mice that are deficient for these
factors, in general, show premature TGC differentiation as a
consequence of the failure to maintain trophoblast stem cells
(Table 2).

Genes involved in maintenance of the ectoplacental cone and/or
spongiotrophoblast

There are many genes involved in maintaining the ectoplacen-
tal cone and/or spongiotrophoblast (Table 2) and, in general, loss-
of-function mutations result in an increase in the number of TGCs.
The precise mechanisms of action are established for only a few
of these factors and only these will be discussed in detail. The
basic helix-loop-helix (bHLH) transcription factor Mash2 plays an
essential role in maintenance of the ectoplacental cone and
spongiotrophoblast and negatively affects TGC differentiation
(Guillemot et al., 1994; Scott et al., 2000; Tanaka et al., 1997).
Mash2 is expressed in the in the chorion, ectoplacental cone and
later spongiotrophoblast (Scott et al., 2000). Mash2-deficient
mice die by E10 due to placenta defects, which include the
absence of spongiotrophoblast, an increase of TGCs and a failure
of labyrinth formation (Guillemot et al., 1994; Tanaka et al., 1997).
A similar phenotype is observed in mutants for the DNA
methyltransferase 3-like gene Dnmt3L (Arima et al., 2006). Dnmt3L
is required for the establishment of maternal methylation imprints,
and Dnmt3Lmat»/» mutants die by E10.5 due to an imprinting defect
and expression of Mash2 is diminished (Arima et al., 2006).

Oxygen levels can regulate trophoblast lineage cell fate in mice
both in vitro and in vivo (Adelman et al., 2000; Cowden Dahl et al.,
2005). Hypoxia promotes in vitro differentiation of trophoblast
stem cells into spongiotrophoblast cells as opposed to TGCs
(Adelman et al., 2000; Takeda et al., 2006). Hypoxia inducible
factors (HIFs) are heterodimeric basic helix-loop-helix/Per-Arnt-
Sim (bHLH/PAS) transcription factors composed of HIFβ/Arnt
and HIF1α or HIF2α, that are activated by hypoxia (Semenza,
2007). In HIF1α/HIF2α double mutants, there are fewer
spongiotrophoblast and syncytiotrophoblast cells, and more TGCs
(Cowden Dahl et al., 2005). Arnt mutant placentas are similar to
HIF1α/HIF2α mutants (Adelman et al., 2000; Cowden Dahl et al.,
2005).

The Cx31 and Cx31.1 genes encode for connexin gap junction
proteins and are involved in maintaining TGC progenitor cells
within the ectoplacental cone and spongiotrophoblast (Kibschull
et al., 2005; Kibschull et al., 2004; Plum et al., 2001; Zheng-
Fischhofer et al., 2007). Cx31 is expressed at pre-implantation
stages, but is restricted to the ectoplacental cone and extraem-
bryonic ectoderm after implantation and then it persists in
spongiotrophoblast (Plum et al., 2001). Cx31.1 is co-expressed
with Cx31 at post-implantation stages, except that its expression
is suppressed in spongiotrophoblast after E11.5 and persists in
glycogen trophoblast cells (Zheng-Fischhofer et al., 2007). Cx31
and Cx31.1 deficient mice show similar placental defects includ-
ing excessive TGCs (Plum et al., 2001; Zheng-Fischhofer et al.,
2007).

Genes involved in TGC terminal differentiation
A large number of factors are implicated in promoting the

terminal differentiation of TGCs though most of the information to
date is limited to insights into P-TGCs (Table 2). Only some of
these factors will be discussed in detail in which the molecular and
cellular function is understood.

Transcription factors. It is well established that bHLH factors play
key roles in TGC differentiation. Hand1 plays an essential role in
promoting TGC differentiation (Firulli et al., 1998; Riley et al.,
1998; Scott et al., 2000). It is expressed in the upper layer of the
chorion, ectoplacental cone and all TGC subtypes. In Hand1
mutants, the ectoplacental cone is smaller, the number of cells
lining the implantation site is reduced and they are strikingly
smaller than normal P-TGCs. Hand1 mutants die by ~E8.5 but, in
studying Hand1-deficient trophoblast stem cells in culture, it
appears that Hand1 is essential for differentiation of all four TGC
subtypes (Simmons et al., 2007). Mash2, the bHLH protein that
maintains the diploid TGC progenitors, antagonizes Hand1 action
(Scott et al., 2000). Stra13, another bHLH factor that is induced by
retinoic acid (Sapin et al., 2000), can induce TGC differentiation
in vitro (Hughes et al., 2004). I-mfa, a bHLH factor interacting
protein, promotes TGC differentiation by inhibiting Mash2 (Kraut
et al., 1998).

Gata transcription factors are also implicated in TGC develop-
ment. Gata2 and Gata3 regulate transcription of TGC-specific
hormone genes (Ma et al., 1997; Ng et al., 1993; Ng et al., 1994).
In addition, Gata2 has been implicated in restricting expression of
the Plpa gene to P-TGCs that surround the ectoplacental cone
(Ma and Linzer, 2000). The results are interesting because they
may imply distinct regulatory mechanisms for TGCs that are
derived from Tpbpa-positive versus Tpbpa-negative precursors.

Intercellular signaling pathways. Several signaling pathways are
implicated in TGC development and highlight the importance of
paracrine interactions. Leukemia inhibitory factor (LIF) is a mem-
ber of the interleukin-6 cytokine family and has several biological
functions (Metcalf, 2003). LIF binds to a low-affinity receptor
(LIFR), which in turn forms a high-affinity complex with the gp130
receptor protein. The LIFR-gp130 heterodimer complex trans-
duces the LIF signal through activation of JAK kinase and STAT
transcription factors (Metcalf, 2003). Suppressor of cytokine
signaling (SOCS) proteins are important negative regulators of
JAK-STAT signaling that form a negative-feedback loop—(Metcalf,
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2003). LIF is expressed in the uterus of pregnant mice (Shen and
Leder, 1992) and promotes TGC differentiation both in cultured
Rcho-1 cells and in vivo (Takahashi et al., 2003; Takahashi et al.,
2008). Deletion of Lifr results in placentas with fewer TGCs
(Takahashi et al., 2003) and disorganized spongiotrophoblast
and labyrinth layers (Ware et al., 1995), resulting in perinatal
lethality. Jak1-deficient mice also die perinatally and show fewer
TGCs with increased spongiotrophoblast cells, suggesting com-
promised differentiation from spongiotrophoblast to TGCs
(Takahashi et al., 2008). In contrast, SOCS3 mutants have
excessive TGCs and smaller spongiotrophoblast and labyrinth
layers (Takahashi et al., 2008). Interestingly, reduction of Lif, Lifr
or Jak1 gene dosage rescues the placental defects and embry-
onic lethality in SOCS3 mutant mice (Boyle and Robb, 2008;
Robb et al., 2005; Takahashi et al., 2003; Takahashi et al., 2008).

Retinoic acid, the active derivative of vitamin A (retinol),
promotes TGC differentiation in vivo and in vitro (Yan et al., 2001)
and several retinoic acid-inducible genes, including Stra13, are
expressed in the developing placenta (Sapin et al., 2000). When
trophoblast stem cells are cultured with retinoic acid, their prolif-
eration is compromised, TGC differentiation is induced but
spongiotrophoblast reduced (Yan et al., 2001). Recent studies
suggest that retinoic acid preferentially induces differentiation of
P-TGCs and suppresses formation of the S-TGC and C-TGC
subtypes, providing the first evidence that different TGC subtypes
can be differentially regulated (Simmons et al., 2007). Retinoic
acid receptors (RARs) and retinoid X receptors (RXRs) form
heterodimers that are the receptors for retinoic acid. RXRα
mutants and RXRα/RXRβ compound mutants die by E16.5 and
E10.5, respectively, and show placenta defects that are mostly
restricted to labyrinth (Sapin et al., 1997; Wendling et al., 1999).
Single RAR mutants do not display obvious placental phenotypes
suggesting redundancy among RARs in placental development
and function.

Several growth factors affect TGC differentiation and/or the
expression of TGC-specific genes including Activin (Erlebacher
et al., 2004), EGF (Yamaguchi et al., 1995), TGFβ (Erlebacher et
al., 2004; Yamaguchi et al., 1995), IGF-I (Kanai-Azuma et al.,
1993), IGF-II (Kanai-Azuma et al., 1993), and PTHrP (El-Hashash
et al., 2005; El-Hashash and Kimber, 2006). Many of these factors

exchange of nutrients and endocrine signals between mother and
fetus. After implantation, TGCs produce hormones and cytokines
for maintenance of the feto-maternal interface and regulation of
maternal adaptations to pregnancy.

Functions of TGCs in establishment of fetal-maternal inter-
face
Adhesion to the uterine epithelium

At the time of implantation, mural trophectoderm cells increase
their adhesiveness and become competent to attach to the uterus
(Armant, 2005). Meanwhile, uterine epithelial cells are primed by
progesterone and estrogen from the ovary and become capable
of attaching to the blastocyst (Dey et al., 2004). TGCs also
produce progesterone (Yamamoto et al., 1994) that may contrib-
ute to regulation of uterine changes. During implantation, tropho-
blast cells attach to extracellular matrix (ECM) in the receptive
uterus, which is composed of fibronectin, laminin, vitronectin and
collagen (Sutherland, 2003; Wang and Armant, 2002). As the
blastocytst and uterine epithelium attach, the now differentiating
P-TGCs express several integrins such as α5β1 (Metcalf, 2003;
Schultz and Armant, 1995), α7β1(Klaffky et al., 2001), α4 β1
(Basak et al., 2002), αIIbβ3(Rout et al., 2004) and αVβ3 (Rout et
al., 2004).

TGCs affect decidualization of the uterine stromal cells
Upon attachment of the blastocyst to the uterine epithelium,

the uterine stromal cells at sites of blastocyst apposition undergo
proliferation and differentiation into decidual cells, a process
called decidualization. The uterine stroma can undergo
decidualization in response to even an artificial stimulus such as
scratching of the epithelium or intraluminal injection of lectin-
coated beads or oil, as long as the uterus has been exposed to
appropriate priming by estrogen and progesterone (Dey et al.,
2004). TGCs are thought to be indispensible for decidualization
because of their production either of progesterone or other
signals that affect decidual cell differentiation (Bany and Cross,
2006). These latter signals are inferred from the fact that there are
differences in gene expression between the decidua surrounding
a normally implanted embryo compared to an artificially induced
one, or surrounding mutant mouse embryos that have TGC

Fig. 4. Summary of the paracrine and endocrine functions of TGCs.

are expressed locally within the uterus
or by trophoblast cells themselves.
However, in most cases, whether
these factors are critical for TGC dif-
ferentiation in vivo has not been es-
tablished through analysis of mouse
mutants.

Functions of TGCs

TGCs have diverse functions that
are crucial for implantation and sub-
sequent placental function (Fig. 4).
The mural trophectoderm-derived
TGCs mediate attachment of blasto-
cyst to the uterine epithelium, induce
uterine decidulization, invade into the
uterine stroma, and anastomose to
form the yolk sac placenta for early
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defects (Bany and Cross, 2006). At least one of the TGC signals
is a type I interferon (Bany and Cross, 2006).

Invasion into the decidua and anastomosis with the maternal
vasculature

After attachment of the blastocyst to the uterine luminal epithe-
lium, P-TGCs invade the uterus by remodeling of the ECM,
phagocytosis and cell motility (Cross et al., 1994). They form a
transient structure called the parietal yolk sac (Fig. 1) that is the
site of exchange for nutrients and gases between the mother and
fetus in the early post-implantation conceptus (Cross et al., 1994).
It is composed of P-TGCs, parietal endoderm cells and an
extensive basement membrane (Reichert’s membrane) between
them (Welsh and Enders, 1987). The formation of the yolk sac
placenta is highly dependent on the ability of the TGCs to
penetrate the uterine epithelium and anastomose with maternal
blood spaces surrounding the implantation site. During anatomosis,
the P-TGCs are highly protrusive, with long cytoplasmic lamina
extended to envelope a diffuse network of maternal blood sinuses
(Bevilacqua and Abrahamsohn, 1989; McRae and Church, 1990).

The mechanisms of trophoblast invasion are best studied in P-
TGCs but SpA-TGCs and glycogen trophoblast cells also invade
into the uterus (Adamson et al., 2002; Pijnenborg et al., 1981).
TGCs secrete a variety of proteinases that are thought to digest
the ECM as well as phagocytosed maternal cells and matrix
materials. They include matrix metalloproteinases (MMP-2, -3, -
9, -13) and inhibitors of metalloproteinases (TIMP-1, -2, -3, -4)
(Alexander et al., 1996; Das et al., 1997; Harvey et al., 1995;
Teesalu et al., 1999; Zhang et al., 2003) urokinase plasminogen
activators (Teesalu et al., 1998; Teesalu et al., 1999) and cathe-
psins (Afonso et al., 1999; Deussing et al., 2002; Hemberger et
al., 2000; Ishida et al., 2004).

Functions of TGCs after implantation
After implantation, TGCs produce many paracrine and endo-

crine factors that target various maternal physiological systems to
maintain maternal adaptations to pregnancy.

Production of hormones that regulate various maternal physi-
ological systems

TGCs produce a broad range of hormones that regulate
several maternal adaptations to pregnancy. In particular, the
prolactin/placental lactogen (PL)/prolactin-like protein (PLP) gene
family is highly evolved in rodents. There are 23 members in mice
and all except for the pituitary prolactin gene are exclusively
expressed in the placenta and in TGCs in particular (Simmons et
al., 2008b, Wiemers et al., 2003). The expression patterns indi-
cate that the 22 placenta-specific genes have diverse functions
(Simmons et al., 2008b).

The PL were first identified in rodents as prolactin-related
hormones that stimulate the mammary gland similar to prolactin
and indeed they work through the prolactin receptor (Linzer and
Fisher, 1999), though it is clear that PL has a variety of other target
tissues. TGCs produce PL-I starting soon after implantation until
mid-gestation and subsequently PL-II from mid-gestation until
term (Talamantes, 1990). In mice in which the pituitary gland is
removed as the source of prolactin, secretion of both PL-I (Lopez
et al., 1991) and PL-II (Kishi et al., 1988) is elevated and some milk
production occurs indicating that the placental lactogens are

partially sufficient to promote mammary development (Thordarson
et al., 1989). PL-I and PL-II also have luteotrophic effects on the
ovary and support progesterone production (Galosy and
Talamantes, 1995; Thordarson et al., 1997). PL-I and PL-II can
also increase insulin secretion (Brelje et al., 1993; Fleenor et al.,
2000; Nielsen et al., 1999; Sorenson and Brelje, 1997) and
stimulate an increase in the number of insulin producing β cells in
pancreatic islets. By contrast, progesterone inhibits insulin secre-
tion and β cell division (Sorenson et al., 1993). PL-I affects the
liver and induces expression of Na+/taurocholate-co-transporting
polypeptide (NTCP) (Cao et al., 2001), which is critical for bile salt
transport. Finally, prolactin modulates the response of the im-
mune system to stress (Dorshkind and Horseman, 2001; Dugan
et al., 2007; Dugan et al., 2002). It is not yet clear if PL-I and/or PL-
II have similar effects.

TGCs secrete several PLPs that regulate hematopoiesis. PLP-
E and PLP-F can stimulate megakaryocytopoiesis and erythro-
poiesis (Bhattacharyya et al., 2002; Lefebvre et al., 2001; Lin and
Linzer, 1999; Zhou et al., 2005). PLP-E is expressed at the first
half of pregnancy by P-TGCs, whereas PLP-F is secreted later in
pregnancy by the spongiotrophoblast layer (Simmons et al.,
2008b), suggesting that they function in a sequential manner.
PLP-E has been shown to stimulate human and mouse erythroid
progenitor cell proliferation and differentiation through activation
of the JAK/STAT pathway (Bittorf et al., 2000). Proliferin 2 (PLF2)
stimulates an increase in the fraction of long-term culture-initiat-
ing cells (LTC-IC) in cultured bone marrow cells (Choong et al.,
2003).

Production of paracrine factors that regulate the feto-maternal
interface

The vascular bed and repertoire of immune cells in the uterus
changes dramatically during gestation. TGCs secrete the PLP
cytokines proliferin (PLF) and proliferin-related protein (PRP) that
stimulate and inhibit endothelial cell migration, respectively (Jack-
son et al., 1994). PLF is expressed in the early half of gestation
and in all TGC subtypes except for S-TGCs (Simmons et al.,
2007). PRP is subsequently expressed in the latter half of gesta-
tion and in all four subtypes of TGCs. TGCs also express vascular
endothelial growth factor (VEGF) (Voss et al., 2000) and placen-
tal-like growth factor (PLGF) (Tayade et al., 2007) in early gesta-
tion. Antagonists of VEGF/PLGF are also expressed in the
placenta. Flt-1 is a VEGF receptor that can undergo alternative
splicing to result in a secreted Flt-1 protein (sFlt-1) that blocks
VEGF action. sFLT-1 transcripts are detected in the
spongiotrophoblast that lies beneath the P-TGCs (Cross et al.,
2002; He et al., 1999), implying a mechanism by which maternal
blood vessels are prevented from growing into the junctional
zone.

TGCs also produce several factors that can regulate blood
flow. First, they secrete PLP-A that in vitro can inhibit the ability of
NK cells to produce interferon-γ (IFNγ) (Muller et al., 1999).
Uterine NK cells are important for spiral artery dilatation through
their production of interferon-γ (Ashkar et al., 2000). TGCs also
produce interferon-γ during mid-gestation (Platt and Hunt, 1998),
and could affect NK cell function directly. Despite the predictions
from the expression patterns and in vitro activity of PLP-A, Plpa-
deficient mice have normal pregnancies unless the pregnant
female mice are exposed to hypoxia (Ain et al., 2004). Second,
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TGCs express adrenomedullin (Montuenga et al., 1997; Yotsumoto
et al., 1998), a vasodilator, and endothelial nitric oxide synthetase
(eNos/Nos3) (Hemberger et al., 2003), an enzyme that produces
the vasodilator nitric oxide (NO) and that is implicated in
vasorelaxation during pregnancy (Gagioti et al., 2000). However,
since spiral arteries at the feto-maternal interface lack smooth
muscle, the targets of these vasodilators are unclear (Cross et al.,
2002). Finally, trophoblast cells, like endothelial cells, suppress
coagulation of blood whereas blood normally rapidly clots when
hemorrhage occurs. P-TGCs, ectoplacental cone and
spongiotrophoblast cells express thrombomodulin, a protein that
has anti-coagulant effects on maternal blood within the parietal
yolk sac and placenta (Isermann et al., 2003; Weiler-Guettler et
al., 1996).

The activity of the local immune function is also altered during
pregnancy in rodents to prevent the maternal immune system
from killing the allogeneic conceptus. The precise mechanisms
are unknown. Progesterone produced by TGCs may have some
effect since it can stimulate activities of type 2 T helper cells (Th2)
(Szekeres-Bartho and Wegmann, 1996) that can secrete cytokines
(e.g., IL-10) that have feto-protective effects. There are significant
changes in the distribution of NK cells during pregnancy associ-
ated with the presence of a normal conceptus (Herington and
Bany, 2007). This implies that factors from the conceptus, likely
from TGCs, regulate NK cell homing, proliferation and/or survival.

Distinct or overlapping functions of the four different TGCs
subtypes?

Based on their distinct locations in the placenta and different
gene expression patterns (Simmons et al., 2007; Simmons et al.,
2008b), we speculate that the four subtypes of TGCs have distinct
functions (Table 1). P-TGCs express the greatest variety of PLPs
among all subtypes of TGCs (Simmons et al., 2008b). PL-I and
PL-II can act on many maternal physiological systems such as
corpus luteum, mammary gland, brain, and pancreas (Soares et
al., 2007). The angiogenesis and hematopoiesis related hor-
mones (PLF, PRP, PLP-A, PLP-E, PLP-F) are also expressed by
P-TGCs (Simmons et al., 2008b), and may function early in
establishing the parietal yolk sac before the circulation into the
mature placenta is established. P-TGCs also express progester-
one and interferon-γ (Yamamoto et al., 1994; Platt and Hunt,
1998) which are important for decidualization and NK cell func-
tion. Thus, the functions of P-TGCs are very broad. In general,
SpA-TGCs express factors that regulate cardiovascular functions
including formation of blood vessels (PLF and PRP) and blood
cells (PLF2, PLP-E, PLP-F), and dilation of spiral arteries (PLP-
A by affecting NK cells) (Simmons et al., 2008b). SpA-TGCs also
express placenta-specific cathepsins, Cts7 and Cts8, and Cts8 in
particular is capable of mediating smooth muscle degradation
and blood vessel disintegration to facilitate formation of  tropho-
blast-lined blood sinuses (Screen et al., 2008). These would
facilitate the maternal blood supply to the conceptus. The C-TGCs
line the canals, but other than this structural role, it is difficult to
imagine their function. S-TGCs produce the least number of PLP
hormones (PL-II, PRP, PLP-K) (Simmons et al., 2008b). Their
expression of PRP, but not PLF, suggests that growth of endothe-
lial cells into the labyrinth may be inhibited which would be critical
for maintaining the hemo-chorial blood space. S-TGCs also
secrete cathepsin Q (Simmons et al., 2007), a cysteine protease

with related family members implicated in trophoblast invasion, as
described above, and hormone regulation. Some cathepsins can
cleave prolactin into peptides that have alternative functions
(Clapp et al., 2006; Hilfiker-Kleiner et al., 2007; Piwnica et al.,
2006). The location of S-TGCs on the maternal side of the feto-
maternal interface implies that they could cleave prolactin-like
hormones before they leave the placenta and enter the maternal
circulation.

Summary

Recent research has made striking progress in understanding
the development and function of TGCs. There are at least four
different subtypes of TGCs within the mature placenta, each
arising at different times and locations in the placenta, and likely
having distinct functions. While we now have a fairly good
understanding of the regulation of TGC development, the functions
of the different TGC subtypes remain very active areas of
investigation and there are key open questions that should guide
future studies. First, it will be intriguing to understand more details
about the different functions of the TGC subtypes and how they
are differentially regulated. Second, TGCs express a wide
repertoire of hormones, but the biological function of most of these
is unknown. Third, since it appears that TGCs regulate homeostatic
physiological systems in the mother, it will be intriguing to see if
and what type of physiological changes in the mother can alter the
development and/or function of TGCs. There are insights from a
variety of experimental animals that alteration of diet can affect
placental development. Hypoxia during pregnancy can also alter
expression of prolactin-like protein genes and supports the notion
that these hormones may mediate responses to pregnancy
stressors. These emerging themes will be important to pursue in
order to gain better insights into the dialogue between the mother
and fetus that occurs during pregnancy.
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