
 

Nodal/Cripto signaling in fetal male germ cell development: 
implications for testicular germ cell tumors
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ABSTRACT  Testicular cancer is the most frequent cancer in young men aged 15-40 years and ac-
counts for 1% of all cancer diagnosed in males. Testicular germ cell tumors (TGCT) encompass a 
broad group of cancers, each displaying different levels of pluripotency and differentiation as well 
as malignancy potential. The TGCT cell of origin is thought to be a fetal germ cell that failed to cor-
rectly differentiate during development: this is known as the ‘fetal origins hypothesis’. This theory 
predicts that developmental pathways that control germ cell pluripotency or differentiation may 
be involved in the malignant transformation of these cells. Recently the Nodal/Cripto signaling 
pathway, known to control pluripotency and differentiation in embryonic stem (ES) cells, was 
implicated in regulating normal male fetal germ cell pluripotency. Although genes of this pathway 
are not normally expressed in germ cells during adult life, ectopic expression of this pathway was 
detected in several sub-groups of TGCTs. In this review, we consider the evidence for the fetal 
origins of TGCT and discuss the implications of Nodal/Cripto signaling in various aspects of germ 
cell development and cancer progression.
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Introduction

During fetal development, primordial germ cells (PGCs) migrate 
to take up residence in the nascent gonads, and then respond 
to molecular cues from gonadal somatic cells that regulate their 
proliferation and sex-specific development. In a mouse fetal ovary, 
PGCs enter meiosis and commit to oogenesis, whereas in a fetal 
testis, they avoid entry into meiosis and instead undergo mitotic 
arrest and begin to differentiate towards spermatogenesis (Hilscher 
1974; McLaren and Southee 1997). Recent studies have identified 
some of the key somatic factors involved in regulating fetal germ 
cell behavior appropriately (Barrios et al. 2010; Bowles et al. 2010; 
Bowles et al. 2006; Koubova et al. 2006). 

It is currently hypothesized that dysregulation of PGC develop-
ment can result in germ cell tumours. In mice, these can take the 
form of testicular teratomas that contain a wide range of differenti-
ated cell types (Jiang and Nadeau 2001; Stevens 1967; Stevens 
1984). Similarly, in humans, germ cells that are not controlled 
appropriately or that incompletely differentiate during fetal life 
has been linked to the development of testis cancer later in life. 
In the present review, we discuss the origins and characteristics 
of testicular cancer in more detail before focusing on the Nodal/
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Cripto signaling pathway that has recently been implicated in fetal 
germ cell pluripotency and development of the tumorigenic state.

Testicular germ cell tumors

Testicular germ cell tumors (TGCTs) are the most common solid 
tumor of young men aged between 15 and 45 years (Adami et al. 
1994). The lifetime risk of testis cancer is estimated at approximately 
0.5 – 1%; environmental and genetic factors, subfertility and ab-
normal testis development all contribute to susceptibility (Heimdal 
et al. 1997; Hemminki and Li 2004; Horwich et al. 2006). Various 
histological subtypes of testis cancer are observed, and most occur 
in the testicles although some tumors also arise in extra-gonadal 
locations. The majority of TGCTs (more than 95%) originate from 
the fetal germ cell population of the testis (Ulbright 1999).
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Subtypes of TCGTs
Type I TGCTs (infantile germ cell tumors) arise from early PGCs 

and develop as teratomas and yolk-sac tumors (YST) in neonates 
and children. These tumors often arise at extra-gonadal locations 
such as the neck, midline brain and retroperitoneum, presumably 
because the transformation occurs as the PGCs are migrating 
towards the gonads during embryonic development (van de Geijn 
et al. 2009). 

Type III germ cell tumors arise from differentiated spermatogo-
nium/spermatocytes of the adult testis and develop as spermatocytic 
seminomas in elderly men. These tumors, along with Type I GCTs, 
are extremely rare and the incidence level has remained constant 
over several decades (Visfeldt et al. 1994).

Type II TGCTs arise from fetal gonadal germ cells, which, instead 
of differentiating into spermatogonia, develop as pre-invasive CIS 
(Skakkebaek 1972). TGCTs of Type II do not develop until after 
puberty and can be further divided into two sub-groups: semino-
mas (SE) and non-seminomas (NS), both of which display many 
markers of both fetal germ cells and pluripotency (Fig. 1) (Sonne 
et al. 2009; van de Geijn et al. 2009). Seminomas are character-
ised by germ cell-like gene expression and are the least-invasive 
Type II germ cell tumor. Conversely, non-seminomas comprise 
both highly pluripotent/undifferentiated pathologies (YST and 
embryonal carcinoma; EC) as well as differentiated pathologies 
containing cells from all three germ layers (choriocarcinoma; CH, 
mixed NS and teratoma; TE). Approximately 10-15% of GCTs are 
mixed tumors, containing both SE and NS histologies (Ulbright 
1999). The incidence of Type II germ cell tumors has doubled over 
the last four decades without an obvious explanation (Giwercman 
et al. 1993; McGlynn et al. 2005; Richiardi et al. 2004; Shah et al. 
2007; Swerdlow et al. 1998).

The TGCTs described above are distinct from somatic cancers 
for two important reasons: Firstly, NS can differentiate into somatic, 
germ and extra-embryonic cell lineages and therefore is considered 
the only known totipotent solid cancer (Honecker et al. 2006; van 

de Geijn et al. 2009). Secondly, the cell of origin or ‘cancer stem 
cell’, CIS, is commonly assumed to originate during early fetal 
development from a germ cell in an undifferentiated environment 
(as opposed to the differentiated, adult tissue that most solid so-
matic cancers arise within) (reviewed by (Kristensen et al. 2008)). 
Due to the latter point, and given the obvious difficulty of directly 
studying CIS in humans, we now discuss other model systems 
that have been sought to investigate this pre-cursor lesion and its 
subsequent transformation into type II GCTs.

Models of carcinoma in situ (CIS) and TGCT

In mice, only models of the type I GCT teratoma exist; teratomas 
have been observed in several mouse strains including the 129/Sv 
wildtype mouse strain, as well as Kitl, Dead-end, Pten and Dmrt1 
loss of function models (Heaney et al. 2008; Kimura et al. 2003; 
Krentz et al. 2009; Stevens 1967; Stevens 1984; Youngren et al. 
2005). In each of these cases, susceptibility was increased on a 
129/Sv background, suggesting strain-specific phenomena. Type 
III GCTs, spermatocytic seminomas, are believed to resemble 
canine TGCTs (Looijenga et al. 1994).

CIS, as well as type II TGCTs of SE and NS have not been 
observed in mice to date. As such, cell lines that resemble both 
SE and NS have largely been used for investigations into gene 
expression and behavior of these tumor sub-types. In addition to 
the lack of mouse models for CIS, CIS cells cannot be cultured 
and therefore no cell line exists for in vitro analysis. 

The reason that mouse germ cells appear refractory to CIS and 
type II TGCT transformation is not yet known. Perhaps differences 
with respect to gene expression on the Y-chromosome have a 
bearing on the capacity of germ cells to transform: for example 
mouse Tspy (testis-specific protein Y-encoded) is non-functional 
but human TSPY is expressed in germ cells, CIS and SE (Li et al. 
2007). Additionally, the timeframe of CIS transformation in human 
versus mouse is thought to play a significant role. In humans, both 
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is produced. Under pathological 
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seminoma (SE) or non-seminomas 
(NS), or both. Seminomas display 
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germ cells and CIS remain in a quiescent state for over a decade 
before proliferation resumes during puberty, presumably in response 
to hormonal triggers (Rajpert-De Meyts and Skakkebaek 1993). 
In mice, the period of germ cell quiescence lasts for little more 
than one week, making it unlikely that the environmental/niche 
cues that direct CIS transformation (along with the accumulation 
of substantial chromosomal abnormalities) have sufficient time to 
induce transformation. 

TGCT fetal origins hypothesis

The fetal origins hypothesis asserts that CIS arises from fetal 
germ cells that have failed to differentiate correctly and that CIS is 
the precursor cell for type II TGCTs that arise after puberty (Skak-
kebaek et al. 1987). There is now abundant indirect evidence to 
support this hypothesis, discussed below. For a comprehensive 
reviews see (Kristensen et al. 2008; Rajpert-De Meyts et al. 2003).

CIS cells resemble fetal germ cells (morphologically and 
transcriptionally)

There is a strong morphological resemblance between CIS cells 
and gonocytes; both are large round cells with distinct nucleoli and 
similar ultrastructural characteristics (Nielsen et al. 1974; Sigg and 
Hedinger 1984; Skakkebaek et al. 1987). At the transcriptional 
level many markers are shared between CIS and fetal germ cells 
(Almstrup et al. 2005). Some of these include: placental-like al-
kaline phosphatase (Manivel et al. 1987), the proto-oncogene kit 
(Jorgensen et al. 1995), OCT3/4, NANOG (Hoei-Hansen et al. 
2004a) AP-2g (Hoei-Hansen et al. 2004b), DCN, IGFBP6, SFRP1, 
SALL1 and SOX17 (Hoei-Hansen et al. 2004a).

CIS cells arise at the right place and time to originate from 
fetal germ cells

After specification in the epiblast, the germ cells migrate through 
the hindgut toward the developing genital ridges. Incidences of 
extra-gonadal germ cell tumors (usually YST) often arise along 
the midline, consistent with the migratory path of fetal germ cells 
(Oosterhuis et al. 2007). CIS cells have been observed during 
fetal development also: mid-trimester fetuses with trisomy 21 
were positive for markers of CIS (Jacobsen and Henriques 1992; 
Satge et al. 1996). Based on shared marker expression between 
CIS and germ cells, and because some genes are expressed only 
transiently during normal germ cell development, it has been esti-
mated that CIS arises before the 9th week of gestation in humans 
(Jorgensen et al. 1995).

CIS cells display pluripotent ‘stem cell’ characteristics
In addition to sharing a transcriptional profile similar to germ 

cells, CIS cells also display stem cell characteristics, consistent with 
them being the precursor cell to TGCTs. Transcriptional analysis of 
CIS and ES cells revealed almost 50% shared gene transcription 
between the two populations (Hoei-Hansen et al. 2004a).

CIS will usually transform to testicular cancer
While CIS is commonly observed in parenchyma adjacent 

to TGCTs (in 90% of cases) (Jacobsen et al. 1981), in multiple 
cases previous identification of CIS has also been associated with 
patients subsequently developing TGCT. As such, identification of 
CIS results in a 50% risk of developing TGCTs within 5 years and 

a 70% chance within 7 years (Linke et al. 2005; von der Maase 
et al. 1986).

Predictions of the TGCT fetal origins hypothesis
The fetal origins hypothesis was described over three decades 

ago and is now well accepted due to the vast body of supportive 
evidence described above. Based on this model, we can therefore 
predict that at least some of the molecular pathways affecting germ 
cell fetal development must be relevant to CIS transformation and 
adult testicular cancer. In the next section we outline signaling 
pathways involved in fetal germ cell development, which have 
also been implicated in TGCTs.

Signaling pathways involved in germ cell development 
and tumorigenesis

Over the past 2 decades several studies, including a recent 
genome wide association study (GWAS), have identified genetic 
pathways that account for about 15% of the genetic risk for TGCT. 
These include pathways known to control various aspects of germ 
cell development: kit signaling (KIT, KITL, SPRY4, BAK1), telom-
erase regulation (TERT, ARF7IP) and sex determination (DMRT1) 
(Turnbull and Rahman 2011).

Kit - Kitl signaling
Spontaneous mutations in kit ligand (Kitl; SCF) and its receptor 

(Kit) were implicated in germ cell development many years ago; 
homozygous mutations in either affect fetal germ cell migration 
and survival and result in infertility (Nishimune et al. 1980; Ros-
koski 2005). Kit protein, normally expressed by fetal germ cells, 
is detectable in CIS (Biermann et al. 2012; Rajpert-De Meyts and 
Skakkebaek 1994) and SE, but not in NS (Rajpert-De Meyts and 
Skakkebaek 1994). Interestingly, heterozygous deletion of Kitl in 
mice increases the TCGT susceptibility on the 129/Sv background 
(Heaney et al. 2008). 

In humans, amplifications of genomic region containing KIT 
(chromosome 4q12) are associated with seminomas (Biermann et 
al. 2007; Looijenga et al. 2003; Murty et al. 1992) while deletions 
of the KITL genomic region (chromosome 12q22) are associated 
with NS. In all cases, mutations to KIT/KITL genomic regions are 
not identified within the precursor lesion CIS, suggesting that kit 
signaling determines the tumor progression after CIS initiation 
(Heaney et al. 2008). 

Signaling pathways downstream from KIT/KITL have also been 
associated with TGCT susceptibility: two genes SPRY4 (Sprouty 
4; chromosome 5q31) and BAK1 (BCL2 –agonist/killer 1; chromo-
some 6p21) regulate mitogen-activated kinase signaling and pro-
apoptotic pathways, respectively (Sasaki et al. 2003; Turnbull and 
Rahman 2011; Yan et al. 2000). These findings suggest that the 
larger network of KIT signaling is involved in the TGCT pathology.

Telomerase function
The extension of terminal chromosomal sequences by the 

enzyme telomerase occurs during every cell division. Reduced 
telomere function has been associated with genome instability 
(Hackett et al. 2001) whilst reactivation favors extended replica-
tive lifespans of malignant cells (Fernandez-Garcia et al. 2008). 
The TERT gene encodes the catalytic subunit of the telomerase 
complex which, although normally absent in adult somatic tissues, 
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is highly expressed in germ, stem and tumor cells. As such, high 
TERT expression was detected in undifferentiated TGCTs (SE) 
but absent from differentiated teratomas (Schrader et al. 2002). 
More recently, amplification of the genomic region harboring TERT 
(chromosome 5p15) was associated with TGCT predisposition 
(Turnbull and Rahman 2011). In the same study, ATF71P (activating 
transcription factor 7 interacting protein; chromosome 12p13), a 
protein that regulates expression of TERT, was also implicated in 
TGCT susceptibility (Turnbull and Rahman 2011).

DMRT1
DMRT1 (doublesex and mab-3 related transcription factor 1) is a 

transcription factor involved in testis differentiation during develop-
ment in multiple species (Smith et al. 1999). Homozygous deletion 
of Dmrt1 on a 129/Sv background increases teratoma formation to 
90% compared to 1% in wildtype male mice (Krentz et al. 2009). 
In a human GWAS study, the genomic region harboring DMRT1 
(chromosome 9p24) was found to be associated with TGCT sus-
ceptibility (Turnbull and Rahman 2011) and deletions of this region 
have previously been associated with impaired gonad development 
and TGCT formation (Barbaro et al. 2009; Livadas et al. 2003).

As mentioned, the above genetic pathways account for only 
15% of heritable TGCT risk, and as such, new pathways regulat-
ing this process remain to be discovered. Recently, the Nodal 
signaling pathway has been shown to control mouse fetal germ 
cell pluripotency and was also found to be overexpressed in hu-
man TGCTs (Spiller et al. 2012). We now examine this signaling 
pathway in more detail and discuss the implications of this work.

Nodal signaling in germ cells and cancer

The Nodal signaling pathway
Nodal, a member of the TGFb family, signals by binding to 

Activin receptors (serine/threonine kinase receptors, predomi-
nantly Alk4 (Acvr1b) and ActRIIA/B (Acvr2a/b)) in the presence of 
the obligate co-receptor, Cripto (also known as teratocarcinoma 
derived growth factor 1; TDGF-1) (Fig. 2). Binding of Nodal to 
Activin receptors causes them to phosphorylate (activate) the 
transcription factor Smad2 that, together with Smad4, regulates 
transcription of target genes (Chang et al. 2001; Schier and Shen 
2000). Nodal up-regulates its own expression as well as the ex-
pression of two other TGFb molecules, Lefty1 and Lefty2, both of 
which act as dose-dependent feed-back inhibitors of the pathway 
(reviewed by (Schier 2009)). Nodal and its secreted Lefty inhibitors 
(Hamada et al. 2002) have been studied intensively for key roles 
in mesoderm generation, establishment of left-right asymmetry 
during gastrulation and specification of ventral cell identity during 
patterning of the nervous system (Shen 2007). All of these func-
tions are Cripto-dependent. 

Although most studies have focused on its roles during em-
bryogenesis and in vitro stem cell generation, Cripto is emerging 
also as a regulator of normal tissue growth and remodeling in 
various tissues including mammary epithelial cells (Bianco et 
al. 2002), adipose tissue (Andersson et al. 2008), endometrium 
(Papageorgiou et al. 2009) and myoblasts (Kemaladewi et al. 
2012), reviewed by (Gray and Vale 2012). Transient activation of 
Cripto is required for stem cell self-renewal and pluripotency, but 
continuous activation is associated with initiation or progression 
of cancer in many tissues including skin, pancreas, intestine and 

breast (reviewed by (Bianco et al. 2005)). Although Cripto is an 
obligate co-receptor for Nodal, it is also required for signaling by 
two other TGFb molecules: growth derived factor 1 and 3 (GDF1, 
GDF3) (Chen et al. 2006; Cheng et al. 2003).

Nodal regulates fetal germ cell pluripotency
Recently Nodal signaling was shown to be active in XY, but not 

XX, fetal germ cells during the period of sexual fate determination in 
the mouse embryo (Souquet et al. 2012; Spiller et al. 2012). Nodal, 
Cripto and the downstream modulator of Nodal signaling, SMAD2, 
were activated in XY germ cells, but not somatic cells, indicating 
autocrine Nodal signaling in those cells (Souquet et al. 2012; 
Spiller et al. 2012). Although all XY germ cells appear to express 
Cripto, the sub-population of germ cells with greatest potential to 
form embryonic germ cells at this stage expressed Cripto, Nodal, 
Lefty1 and Lefty2 at the highest levels. In purified germ cell culture, 
Cripto expression was induced by the male fate-promoting factor, 
FGF9 (Bowles et al. 2010) suggesting that this is how it comes to 
be upregulated in XY germ cells during fetal development. In a 
similar way, FGF2, one of the factors required for dedifferentiation 
of germ cells to EG cells (Durcova-Hills et al. 2006; Durcova-Hills 
and Surani 2008; Matsui and Tokitake 2009; Matsui et al. 1992; 
Resnick et al. 1992), was able to induce Cripto expression in vitro. 
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Nodal Lefty 1/2
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II
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nucleus
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Fig. 2. Model of Nodal signaling. Nodal, a member of the TGFb family, 
signals by binding to Activin receptors (predominantly ActRIIB, ALK4) in 
the presence of the obligate co-receptor, Cripto. Binding of Nodal to Activin 
receptors causes them to phosphorylate (activate) SMAD2 to regulate 
transcription of target genes. Lefty1 and Lefty2, also TGFb molecules, 
repress the pathway in a dose-dependent manner. Nodal up-regulates its 
own expression as well as the expression of its inhibitors, Lefty1 and Lefty2. 
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Suppression of Nodal/Cripto signaling using the hypomorphic No-
dalflox/flox mouse line (Lowe et al. 2001) led to a reduction in germ 
cell pluripotency makers and a decreased ability to form EG cells 
(Spiller et al. 2012). 

These results suggested that the function of cell-autonomous 
Nodal/Cripto signaling in XY germ cell development is to maintain 
germ cells in a state of pluripotency, thereby avoiding differentiation 
for a time (Spiller et al. 2012), a role akin to that seen in human 
ES cells (James et al. 2005). In contrast to these findings however, 
another study concluded that disruption of Activin/Nodal signaling 
affected fetal germ cell meiosis (although pluripotency was not 
investigated) (Souquet et al. 2012). In that study, Activin/Nodal 
inhibitors disrupted Nodal signaling in germ cells but also Activin 
signaling in somatic cells, so it is possible that the observed meiosis 
is the result of inadvertent disruption of the gonadal environment: 
Activin is normally required for the induction of germ cell mitotic arrest 
and differentiation (Mendis et al. 2010). Complete Nodal deletion 
in germ cells may be required to clarify whether the main role of 
Nodal signaling is to maintain pluripotency or to prevent meiosis. 
In the hypomorphic Nodalflox/flox mouse line, no ectopic entry into 
meiosis was observed (Spiller et al. 2012) 

Nodal signaling pathway genes are over-expressed in TGCTs
Having established a role for endogenous Nodal signaling during 

normal germ cell pluripotency, and based on the fetal origins hypoth-
esis, it was hypothesized that this pathway may be mis-regulated in 
cases of human TGCT (Spiller et al. 2012). Consistent with a role 
in pluripotency maintenance in fetal germ cells, CRIPTO, NODAL 
and downstream target LEFTY1 expression positively correlated 
with CIS presence in testis biopsies and in the undifferentiated NS 
(EC and YST) (summarized in Table 1; (Spiller et al. 2012)). The 
finding that a developmental pathway that controls pluripotency in 
fetal germ cells is mis-regulated in cases of human TGCTs provides 
further support for the fetal origins hypothesis.

Implications for normal germ cell development
As discussed, during fetal development in the testis, XY germ 

cells express Nodal, Cripto and also Lefty1 and Lefty2 (Souquet 
et al. 2012; Spiller et al. 2012). Lefty1 and Lefty2 are known direct 
downstream targets of Nodal signaling and their transcription in 
germ cells confirms that these cells are responding to Nodal sig-
naling (Branford and Yost 2002; Feldman et al. 2002; Meno et al. 
1999). During gastrulation and neurogenesis, Leftys play important 
roles in limiting the range of Nodal signaling and fine-tuning the 
Nodal concentration gradient via a reaction-diffusion mechanism 
(Schier 2009; Shen 2007). Hence, the question arises as to the 
function of Lefty during testicular germ cell development, given that 
only germ cells express the co-receptor Cripto and that positional 

information does not seem to be essential for determining germ 
cell behavior in the developing testis. It is possible that Leftys act 
to prevent non-Cripto dependent Nodal action outside of the germ 
cell compartment of the testis. It will be of interest to test the con-
sequences of genetically or pharmaceutically manipulating Lefty 
activity during gonadal development. It will also be informative to 
determine whether any Cripto-independent role for Nodal exists, 
and vice versa, using Cripto deletion in germ cells (Liguori et al. 
2008). Given the early requirement for both Nodal and Cripto during 
gastrulation, conditional deletion of these genes within fetal germ 
cells will be required.

Implications for embryonic stem (ES) and embryonic germ 
(EG) cells

Activin/Nodal signaling is now well established in the mainte-
nance of pluripotency of human and rabbit ES cells (Honda et al. 
2009; James et al. 2005; Vallier et al. 2004) and mouse and pig 
epiblast stem cells (EpiSC), which are derived from the epiblast 
of post-implantation, pre-gastrula embryos (Alberio et al. 2010; 
Brons et al. 2007; Tesar et al. 2007). EpiSCs, like human and rab-
bit ES cells, require the presence of FGF2 and Activin in order to 
maintain pluripotency (Brons et al. 2007; Chou et al. 2008; Tesar et 
al. 2007). They express Oct4, Sox2, Nodal and Nanog as well as 
low levels of the ES cell and germ cell marker Stella, presumably 
due to their epigenetic status. In such contexts Nodal is known to 
regulate expression of the homeodomain transcription factor Nanog 
(Chambers et al. 2003; Mitsui et al. 2003). Oct4, another target of 
Nodal signaling and activator of Cripto transcription (Watanabe et 
al. 2010), together with Sox2 and Nanog comprise the gene regu-
latory network sufficient for pluripotency maintenance in ES cells. 
In contrast, mouse ES cell maintenance only requires the cytokine 
LIF, a member of interleukin-6 family that signals via the gp130 
receptor to control the Jak-Stat pathway (Loh et al. 2006). Given 
that endogenous Nodal signaling maintains pluripotency in fetal 
germ cells (Spiller et al. 2012), it seems that these cells are more 
similar to human and rabbit ES cells and mouse and pig EpiECs, 
than to mouse ES cells. Such properties may be important when 
considering re-programming of ES cells to germ cells and vice-versa.

The generation of EG colonies from primordial germ cells is 
testament to their stem cell potential as these colonies closely 
resemble ES cells and can contribute to all three embryonic germ 
layers. EG derivation is induced by the presence of three factors: 
LIF, FGF2 and KITL (Durcova-Hills et al. 2006; Durcova-Hills and 
Surani 2008; Matsui and Tokitake 2009; Matsui et al. 1992; Resnick 
et al. 1992). Interestingly, FGF2 is able to upregulate Cripto expres-
sion in isolated XY and XX germ cells (Spiller et al. 2012): since 
FGF2 is required only during the first 24 hours of EG cell derivation 
(Durcova-Hills et al. 2006) it is possible that its major role is to prime 
the germ cells for reprogramming by triggering Cripto expression. 
The male-specific endogenous expression of Cripto may underlie 
the slightly greater propensity of XY germ cells to generate EG cells 
when compared with XX germ cells, as has been reported in some 
studies (Kimura et al. 2008; Labosky et al. 1994). 

It is important to note that only small populations of germ cells 
are able to respond to the signaling molecules that induce EG cell 
derivation (Durcova-Hills and Surani 2008). This phenomenon is 
being reflected in many recent findings highlighting the heterogene-
ity of the fetal germ cell population with respect to gene and cell-
surface marker expression (Matsui and Tokitake 2009; Spiller et al. 

Tumor NODAL CRIPTO LEFTY1 

Carcinoma in situ (CIS) + + + 

Seminoma (SE) - - - 

Non-seminoma (NS) 

Embryonal carcinoma (EC) + +  

Mixed non-seminoma (mNS) +/- +/- +/- 

Yolk-sac tumor (YST) + + + 

Choriocarcinoma (CH) - - - 

Teratoma (TE) - - - 

TABLE 1

EXPRESSION OF NODAL PATHWAY GENES IN TYPE II TGCTs
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2012). Sub-populations of fetal germ cells with differing potentials for 
pluripotency and/or differentiation would also suggest that inherent 
differences in these cells contribute to the potential for CIS transfor-
mation, in addition to disturbances in the local niche environment.

Implications for germ cell transformation to CIS
The findings of Spiller et al. (2012) led us to hypothesize that 

during human CIS formation, CRIPTO expression is maintained 
or re-activated, triggering upregulation of Nodal signaling, aberrant 
expression of pluripotency markers and subsequent progression to 
the oncogenic state. It is possible that ectopic expression of CRIPTO 
makes such germ cells refractory to normal differentiation cues of 
the TGFb signaling pathway as has been observed in other systems 
(Gray et al. 2003; Gray et al. 2006). In human cancers, CRIPTO has 
emerged as an oncogenic growth factor, controlling proliferation, 
migration and survival (Bianco et al. 2005; Wechselberger et al. 
2005). CRIPTO functions as a dominant transforming gene when 
over-expressed in the NOG-8 mouse mammary epithelial cell line 
or NIH/3T3 fibroblasts (Ciccodicola et al. 1989). Despite the multi-hit 
hypothesis for tumor formation, our understanding of the biology of 
Nodal/Cripto signaling in germ cells so far suggests that expres-
sion of Cripto may be sufficient to endow germ cells with sufficient 
tumorigenic capacity to trigger CIS. 

Implications for CIS transformation into seminoma vs. non-
seminoma

CIS cells have the potential to develop down multiple pathways: 
germ-cell like tumor (SE), pluripotent tumors (EC) and differenti-
ated teratomas and extra-embryonic components (CH, YST). The 
mechanism by which a CIS cell is induced to develop into either 
SE or NS (or both) is unclear. Over-expression of Nodal signaling 
genes was detected in biopsies containing CIS and the NS tumors 
EC and YST (Spiller et al. 2012). This finding is somewhat unusual 
given that genes expressed in CIS are often also expressed in SE 
given their close resemblance to fetal germ cells. The finding that 
CRIPTO is expressed by CIS but is switched off during progres-
sion into SE suggests that Nodal signaling in this context is highly 
dependent on the stem cell niche of the CIS cell environment. It is 
possible that, as seems to be the case with the generation of EG 
cells in vitro, expression of CRIPTO/NODAL makes human germ 
cells more susceptible to signals that trigger complete dedifferen-
tiation and tumor formation. Perhaps the CIS cells that lack such 
dedifferentiation factors in their environmental niche are the ones 
that progress to SE, a cancer characterised by expression of fetal 
germ cell genes.

Alternatively (or additionally), it is intriguing to speculate that lev-
els of CRIPTO expression in a given CIS cell are instructive, rather 
than passive, and determine the fate of CIS transformation into 
SE versus NS. Indeed, such heterogeneous regulation of CRIPTO 
(at both the level of promoter methylation and protein expression) 
in the EC cell line NTERA2, correlated CriptoHigh-expressing cells 
with an undifferentiated state and greatest tumorigenic potential 
(Watanabe et al. 2010).

Looking at the broader Nodal signaling pathway, it is possible that 
NODAL and CRIPTO act as oncogenes during development of CIS 
and TGCTs whilst LEFTY genes may encode tumor-suppressors. 
This hypothesis is supported by the observation that NODAL, 
CRIPTO and LEFTY expression are elevated in the YST subtype 
of NS but only NODAL and CRIPTO expression are elevated in 

the more dangerous form, EC. If Nodal signaling is triggered but 
the negative regulator of the pathway, LEFTY, is not expressed, a 
highly pluripotent phenotype should result (Postovit et al. 2008). 

Given that Nodal/Cripto signaling is a key developmental pathway 
essential for gastrulation, it is unlikely that gene mutations will be 
discovered within this pathway in CIS and TGCTs. Rather, levels of 
gene expression are likely altered during the process of transforma-
tion. Investigation of the methylation status of Nodal/Cripto pathway 
gene promoters in CIS and TGCT pathologies may shed some light 
on the regulation of gene expression in these contexts: hypometh-
ylation of oncogenes and hypermethylation of tumor-suppressor 
genes are commonly seen in cancer. Additionally, analysis of the 
CRIPTO promoter during normal fetal germ cell development may 
provide clues as to how CRIPTO expression is regulated under 
normal circumstances. 

Future directions
Confirmation that the Nodal/Cripto pathway is active during normal 

human fetal germ cell development and that the Cripto protein is 
expressed on the surface of CIS cells should now be sought. Impor-
tantly, investigation of Cripto expression in the rare instance when 
fetal CIS biopsies are available would assist in confirming whether 
CRIPTO expression is maintained or instead re-activated during 
CIS development. If these studies suggest that CRIPTO expression 
is maintained, the developmental window for fetal gonocyte trans-
formation into CIS could be narrowed to the period of endogenous 
Cripto expression during development (ie. 12.5 – 14.5 dpc in the 
mouse). A better understanding of how Nodal/Cripto signaling is 
regulated during fetal germ cell development, including FGF control 
of this process, will help us to understand how Cripto is retained or 
re-activated during malignant transformation. 

Conclusions

We rely on germ cells for fertility - the propagation of our species. 
Because these cells are generally specified and matured correctly, 
the potential they hold for reversion to pluripotent and tumorigenic 
states is perhaps not often fully appreciated. A fine balance between 
XY germ cell pluripotency, proliferation and quiescence must be 
achieved within a relative short window during human gestation: 
uncontrolled proliferation results in cancer whereas failure to dif-
ferentiate can result in infertility. We currently know little of how 
these processes are balanced, although we predict, based on the 
fetal origins hypothesis, that developmental pathways controlling 
germ cell development are involved. The discovery that the Nodal/
Cripto signaling pathway controls normal germ cell pluripotency 
but is activated ectopically in the most deadly forms of TGCTs in 
humans may have provided a starting point for further investigations 
into this process. Indeed, only 15% of TGCTs can be explained 
by gene amplifications/deletions so far, and so the search must 
continue for new mechanisms of regulation. Understanding such 
molecular pathways and factors that control or maintain germ cell 
differentiation or stemness will have important implications for both 
fertility and cancer treatment in the future.
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