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ABSTRACT  TGF-b signalling plays a key role in the patterning of metazoan body plans and growth. 
It is widely regarded as a ‘module’ capable of co-option into novel functions. The TGF-b pathway 
arose in the Metazoan lineage, and while it is generally regarded as well conserved across evolu-
tionary time, its components have been largely studied in the Ecdysozoa and Deuterostomia. The 
recent discovery of the Nodal molecule in molluscs has underlined the necessity of untangling this 
signalling network in lophotrochozoans in order to truly comprehend the evolution, conservation 
and diversification of this key pathway.  Three novel genome resources, the mollusc Patella vulgata, 
annelid Pomatoceros lamarcki and rotifer Brachionus plicatilis, along with other publicly available 
data, were searched for the presence of TGF-b pathway genes. Bayesian and Maximum Likelihood 
analyses, along with some consideration of conserved domain structure, was used to confirm gene 
identity. Analysis revealed conservation of key components within the canonical pathway, allied 
with extensive diversification of TGF-b ligands and partial loss of genes encoding pathway inhibi-
tors in some lophotrochozoan lineages.  We fully describe the TGF-b signalling cassette of a range 
of lophotrochozoans, allowing firm inference to be drawn as to the ancestral state of this pathway 
in this Superphylum. The TGF-b signalling cascade’s reputation as being highly conserved across 
the Metazoa is reinforced. Diversification within the activin-like complement, as well as potential 
wide loss of regulatory steps in some Phyla, hint at specific evolutionary implications for aspects 
of this cascade’s functionality in this Superphylum. 
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Introduction

The TGF-b signalling pathway (Fig. 1A) has been well studied 
in a wide variety of traditional model systems, and is regarded 
as a ‘module’ (Wagner 1996) capable of regulating homeostasis, 
growth, and differentiation in a range of contexts (Derynck and 
Miyazono 2008, Moustakas and Heldin 2009, Massagué 2012). 
While the TGF-b pathway most likely arose in its canonical form 
in the metazoan common ancestor (Pang et al., 2011), its diver-
gence across the Metazoa and the ancestral roles played by its 
components are still in many ways unknown. 

Attempts have been made to categorise the ancestral metazoan 
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TGF-b cassette (Herpin et al., 2004, Matus et al., 2006, Adamska 
et al., 2007, Huminiecki et al., 2009). According to such analysis 
it is known that the original Metazoan repertoire consisted of at 
least four TGF-b receptors and four Smads (Suga et al., 1999, 
Huminiecki et al., 2009), although the extent of the original ligand 
cassette and regulatory repertoire remains uncatalogued. While 
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fully-fledged TGF-b signalling components have not yet been 
found outside the Metazoa, the choanoflagellate Monosiga brevi-
collis has been shown to possess a gene with an MH2 domain 
similar to that of a Smad class protein (Srivastava et al., 2010, 
Pang et al., 2011). Both the placozoan Trichoplax adhaerens and 
the ctenophore Mnemiopsis leidyi have a fairly complete central 
signalling pathway complement (Humineicki et al., 2009, Pang et 
al., 2011), and sponges possess at least the basic receptor and 
Smad complements found in the Bilateria (Suga et al., 1999). The 
evolution of some elements of the cassette is less well understood, 
particularly those components that act to modulate signalling.

The TGF-b signalling pathway has been well studied in tradi-
tional ecdysozoan (van der Zee et al., 2008) and deuterostome 
(Massagué et al., 2000) model systems such as Drosophila me-
lanogaster and Mus musculus. The few attempts that have been 
made at categorizing elements of the lophotrochozoan TGF-b 
cassette have typically been limited to individual elements and/
or single species (for example, Herpin et al., 2005, Freitas et al., 
2007, Kuo and Weisblat 2011). Discoveries such as that of Nodal 
in the Mollusca (Grande and Patel 2009) have led to further inter-
est in the true pattern of conservation and diversification of genes 
in this pathway. With the genomic resources now on-hand we 
should be able to trace its ancestral form and function, at least 
across the Bilateria.

In essence while the TGF-b pathway regulates a number of 
highly complex processes in animal tissues its core mode of action 
is simple, and can be seen schematically in Fig. 1A. TGF-b ligands 
form dimers and bind sequentially to Type II and Type I receptors, 
which form a complex and are phosphorylated. Upon activation of 
the Type I receptor within the signalling complex, receptor-regulated 
Smads (R-Smads) are recruited from the cell membrane with the 
aid of proteins such as Smad anchor for receptor activation (SARA) 
(Itoh and ten Dijke 2007). R-Smads are then phosphorylated and 
activated by the receptor complex (Massagué et al., 2005). R-Smads 
can be divided into two families, depending on the ligands to which 
they respond– Mad/Smad 1/5/8 responds to BMP signalling, and 
Smox/Smad 2/3 to TGF-b, Activin, and Nodal signalling (Heldin and 
Moustakas 2012). Once activated, R-Smads bind to a co-Smad 
(Medea/Smad 4) to form a complex that mediates transcription in 
the nucleus, resulting in up- and down-regulation of target genes 
(Ross and Hill 2008). Inhibitory Smads (known as Dad or Smad 
6/7), compete with R-Smads for activation by receptor complexes, 
thus regulating the pathway (Ross and Hill 2008).

Complexity is introduced to the TGF-b signalling cascade by the 
diversity of regulatory mechanisms which modulate it both extra- 
and intra-cellularly, and which are perhaps more free to vary than 
the core signalling cascade. TGF-b ligands can be removed from 
the extracellular environment by ligand traps, such as the Chor-
dins, Noggins and DANs (Balemans and Van Hul 2002). These 
are vital for many aspects of development, including the correct 
specification of dorsoventral polarity, and have been catalogued in 
ecdysozoans and deuterostomes (Holley et al., 1995). It has been 
observed that ecdysozoans have less diversity in these protein 
classes than vertebrate models (van der Zee et al., 2008). Tolloid, 
a zinc metalloprotease, is capable of cleaving Chordin, hence re-
releasing the trapped ligand, as well as cleaving other potential 
repressors of TGF-b signalling, such as proteoglycans (Scott et 
al., 1999). This plays a key role in establishing the body plan of 
early embryos, including those of lophotrochozoans (Herpin et al., 

2007). TGF-b ligand binding to receptor serine/threonine kinases 
can also be up- or down - regulated at the cell surface by mem-
brane anchored co-receptors and receptors (Shi and Massagué 
2003). Some co-receptors, such as Cripto and the EGF-CFC class 
of genes, allow active ligand-receptor complexes to be formed by 
acting as cofactors and are vital for the function of some ligands 
(Cheng et al., 2003, Shen and Schier 2000). Down-regulation can 
be performed by pseudoreceptors such as BMP and membrane 
bound inhibitor (BAMBI, also known as Nma), which compete 
with functional Type I receptors for ligand binding (Onichtchouk 
et al., 1998). The existence of these regulatory mechanisms has 
been noted in protostomes previously (van der Zee et al., 2008), 
but the degree to which these are conserved across the Bilateria 
is unknown, and the possibility that these regulatory mechanisms 
have diversified, changed in function or have been lost in some 
lineages is yet to be explored. 

Further intracellular regulation of TGF-b signalling also occurs. 
FKBP12, Dad/SMAD7 recruited E3 ubiquitin ligases and SMAD 
ubiquitination regulatory factors (SMURFs) can up- and down- 
regulate signalling within the cell (Shi and Massagué 2003, Itoh 
and ten Dijke 2007). These, and other regulatory mechanisms, 
often participate in other signalling cascades. The full repertoire 
of regulatory interactions with the TGF-b cascade is beyond the 
scope of this manuscript, and we refer the interested reader to the 
detailed reviews available on this topic (e.g. Shi and Massagué 
2003, Moustakas and Heldin 2009, Al-Salihi et al., 2012).

For all its importance and ubiquity, the TGF-b pathway within 
the Lophotrochozoa has yet to be satisfactorily documented. Some 
studies have found evidence of diversification at the ligand level 
within the leech Helobdella robusta (Kuo and Weisblat 2011) and 
platyhelminthes (Gavino and Reddien 2011, Freitas et al., 2007), 
while other aspects of the signalling pathway may be conserved 
(Molina et al., 2011) although this is unclear (Kuo and Weisblat 
2011). The identification of the full signalling complements of a 
number of lophotrochozoan species should provide a springboard 
for the disentanglement of this network.

Here we present a comprehensive catalogue of the compo-
nents of TGF-b signalling in members of the lophotrochozoan 
Superphylum (Fig. 1B), allowing for the first time a Metazoa-wide 
understanding of the evolution and divergence of this crucial signal-
ling pathway. We investigated the genomes of the mollusc Lottia 
gigantea, the annelid Capitella teleta (Simakov et al., 2013), the 
bdelloid rotifer Adenita vaga (Flot et al., 2013) and the planarian 
Schistosoma mansoni (Berriman et al., 2009), along with tran-
scriptomic and novel genomic resources for the monogont rotifer 
Brachionus plicatilis, limpet mollusc Patella vulgata and the serpulid 
annelid Pomatoceros lamarcki. We demonstrate the existence of 
the majority of the core TGF-b cassette in the Lophotrochozoa, 
confirming the conservation of this ‘module’ across evolutionary 
time, albeit with extensive diversification of the ligand complement 
in this lineage and loss of genes encoding extracellular inhibitors 
in some species. 

Results 

TGF-b ligands
TGF-b ligands participate in a diverse range of mechanisms in 

cellular specification and functionality. They are synthesized as 
relatively long precursor proteins, but an N-terminal propeptide 
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is cleaved during processing, leaving a short, 110-140 amino 
acid mature ligand. The mature ligand can be recognized by the 
characteristic conservation of at least six cysteine residues that 
when folded form a structure known as a cysteine knot, stabilized 
by three disulfide bonds (ten Dijke and Arthur 2007). 

There are 33 distinct genes encoding TGF-b ligands in humans, 
seven in D. melanogaster and five in Caenorhabditis elegans (Hu-
mineicki et al., 2009). These ligands can be split into two broad 
classes, the TGF-b/Activin/Myostatin class (generally referred 
to here as the TGF-b class) and the BMP (bone morphogenetic 
protein) class (Yamamoto and Oelgeschläger 2004). Generally 
these classes are mirrored by the signalling pathway through which 
they operate (see Fig. 1A for details) but this is not always the 
case - Nodal, for instance, is generally said to belong to the BMP 
class, but Nodal signals are transduced via the TGF-b pathway. 
We should note that nomenclature regarding whether these are 
‘families’ or ‘classes’ varies in the literature. In this study we have 
followed the Linnaean convention, where classes are broader 
groupings – either TGF-b or BMP-related, while families refer to 
groupings of orthologous genes within the class set.

In many ways the complements of TGF-b ligands found in 
lophotrochozoan genomes are similar to those found in more 
classical model organisms. This similarity breaks down, however, 
in the TGF-b class, which appears to have undergone extensive 
divergence in this Superphylum. Initial attempts at making phylo-
genetic trees for TGF-b ligands were confounded by the diversity 
of ligand sequence in this class, which resulted in poor alignments 
and multiple gaps, and, ultimately, poorly-supported trees. Supple-
mentary Fig.1 shows one such tree (Maximum Likelihood (ML), 

Whelan and Goldman (WAG) model, 1000 bootstrap replicates). 
To better ascertain phylogenetic relationships within and between 
TGF-b ligands, we have analysed the interrelationships of the 
TGF-b class in two steps - firstly, by assigning, on the basis of 
the preliminary tree shown in Supplementary Fig. 1, and by Blast 
identity (Altshul et al., 1990), ligands to either the BMP class or 
the Activin/TGF-b class, and secondly by analysing these two 
classes separately.

The results of maximum likelihood and Bayesian inference of 
their phylogenetic relationships for the BMP class can be seen 
in Fig. 2. Both means of phylogenetic inference recover clear 
familial relationships between lophotrochozoan sequences and 
orthologues of many well-described genes. Bootstrap values are 
not always high, most likely due to the relatively short dataset (88 
amino acid alignment) from which these samples were drawn. 
Posterior probabilities, however, clearly support many nodes on 
the Bayesian tree; for example, the ADMP clade has a posterior 
probability of 1 under Bayesian analysis, but bootstrap support of 
71 under ML analysis. 

The existence and expression of several members of the BMP 
class of the TGF-b ligand superclass in the Lophotrochozoa has 
already been established by prior studies, although the phyloge-
netic distribution of these studies has been scattered and the full 
lophotrochozoan complement was unclear (e.g. Nederbragt et 
al., 2002, Freitas et al., 2007, Grande and Patel 2009, Kuo and 
Weisblat 2011). It seems that annelids and molluscs have retained 
the majority of the diversity of the BMP class found in the Ecdyso-
zoa and Deuterostomia, and in many cases better conservation 
is found than in ecdysozoan models. In contrast, B. plicatilis and, 

Fig. 1. Summary of TGF-b/BMP signalling cascades and Lophotrochozoan interrelationships. (A) Canonical TGF-b/BMP signalling cascades: 
representation of the canonical signalling pathways for TGF-b-like and BMP-like cascades with inhibitors of signalling shown in red and operational 
signalling shown in black. Only ligands with well-known affinity to one or other signalling pathway listed, with each pathway operating through different 
combinations of Type I and Type II receptors, and hence signalling through either Smad 2/3 or Smad 1/5/8 proteins intracellularly. Ligands are regulated 
extracellularly by a diverse range of inhibitors, which can themselves be cleaved by Tolloid to release ligands and allow signalling to occur. Intracellular 
regulation of signalling can occur at the receptor level, with BMP and activin membrane-bound inhibitor (BAMBI) recruited in the place of functional 
Type I receptors, or intracellularly, through Smad 6/7 inhibition of signal transduction from receptors, SMURF-mediated degradation of Smad signalling 
proteins, or a range of further mechanisms not shown here. (B) Cladogram representing lophotrochozoan (boxed) and metazoan inter-relationships, 
based on Dunn et al., (2008). Non-bilaterally symmetrical metazoans are represented by the paraphyletic group “Diploblastica”.
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in particular, S. mansoni, have apparently lost many of the more 
BMP-like members of the TGF-b ligand cassette. The criteria used 
as a basis for assignations of genes to particular families can be 
seen in the Materials and Methods section.

The apparent Ecdysozoan-specific loss of Nodal and BMP3/
GDF10 is corroborated by our analysis, but we recover well-sup-
ported nodes containing lophotrochozoan orthologues for these 
gene families. For more detailed exploration of Nodal ligands, we 
refer the interested reader to Grande et al., 2014 in this issue. More 
complex is the case of the Univin/VG-1/GDF1/3-like family. While 

these are not recovered as a monophyletic grouping in Fig. 2, they 
have appeared in previous studies as a well-supported clade of 
deuterostome-specific genes, for example in Lapraz et al., (2006). 
The H. robusta BMP 2/4b sequence (AEL12442.1) has also been 
noted as showing some resemblance to the Univin/VG-1/GDF1/3-
like family. An annelid gene, which we have named “UNKNOWN” in 
Fig. 2, groups with poor support with the GDF1/3 family in Bayesian 
trees. Better sampling is needed across the Lophotrochozoa in 
order to confirm whether these are truly orthologous to the Vg1/
Univin/GDF1/3 genes in the Deuterostomia. 
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Fig. 2. Phylogeny of the BMP-like ligand class familial interrelationships across the Metazoa, as determined by (A) maximum likelihood (Tamura 
et al., 2011) and (B) Bayesian (Huelsenbeck and Ronquist 2001) methods. Alignment generated by MAFFT (Katoh and Standley 2013) using the L-INS-i 
strategy resulting in an 88 amino acid informative alignment of the mature ligand domains after the exclusion of gaps. Both phylogenies determined 
using the WAG model (ML: +4G) (Whelan and Goldman 2001). Bootstrap percentage (of 1,000 replicates) and posterior probabilities (after 3,000,000 
generations) can be seen at the nodes of ML and Bayesian trees respectively. Lophotrochozoan sequences underlined in red. Phylogenies rooted with 
known Neuturin and GDNF outgroups. Sequences used in phylogenetic analysis, along with alignment, can be found in Supplementary File 1. Scale 
bars represent substitutions per site at given distances.
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Canonical homologues of BMP 2/4 (Dpp), BMP 5-8 (Gbb/Scw), 
BMP 9/10 (GDF5-7), ADMP and Maverick are also found in the 
Lophotrochozoa as reported by our trees (Fig. 2). These appear 
to be far better conserved in the Mollusca and Annelida than in 
other lophotrochozoan lineages examined. No homologues for 
GDF9/BMP15 can be found in our lophotrochozoan datasets, 
implying that this is a deuterostome or even chordate innovation 
(as suggested by the lack of such a ligand in Lapraz et al., 2006).

Fig. 3 shows the inferred identity of the genes of the activin/
myostatin/inhibin-like clade as determined by phylogenetic analysis. 
Clear and reproducible signals were found for a canonical Myostatin 
clade, especially in the case of Bayesian analysis, where Myostatins 
cluster together with a posterior probability of 1. P. lamarcki appears 
to have duplicated this gene, but this is not found in other annelids, 
and is likely lineage-specific. Support for an Activin/Inhibin clade 
is weak in both Bayesian and Maximum Likelihood phylogenies 
shown. Clades for TGF-b and Lefty homologues in deuterostomes 
are consistently recovered with good support. On the basis of the 
tree presented here, Lefty and TGF-b ligands sensu stricto seem 
to be deuterostome innovations, with the previous report of a 

tentative TGF-b homologue in M. leidyi (Pang et al., 2011) stand-
ing as evidence against this. We have included this sequence in 
the tree shown in Fig. 3, and, as stated in Pang et al., (2011), it is 
only weakly supported as a homologue of the TGF-b clade sensu 
stricto. Wider taxon sampling at the base of the Metazoa, and 
particularly in the Ctenophora beyond M. leidyi, would allow us to 
test whether TGF-b ligands (in the strictest sense) are indeed a 
deuterostome novelty.

Our investigations of the genome of A. vaga revealed a total of 
10 ligands with gene models or transcript support for their existence. 
Five further genes were present in their entirety in the genome, 
with some gene models supporting their existence, but without 
evidence of transcription. As such, these were not included in the 
curated gene list appearing in that genome’s publication (Flot et 
al., 2013). However, as transcripts could be temporally restricted in 
appearance, or present in very low levels, we have included these 
sequences in Supplementary File 1 for consideration by interested 
parties. In particular, we note the existence of three complete BMP 
5-8 genes with no evidence of pseudogenisation. 

The large number of ligands seen in A. vaga is the result of 
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Fig. 3. TGF-b-like class familial phylogenetic interrelationships across the Metazoa, as determined by (A) maximum likelihood (Tamura et al., 
2011) and (B) Bayesian (Huelsenbeck and Ronquist 2001) methods. Alignment generated by MAFFT (Katoh and Standley 2013) using the G-iNS-i 
strategy, resulting in a final 71 amino acid informative alignment. Both phylogenies determined using the WAG mode (Whelan and Goldman 2001). 
Bootstrap percentage (of 1,000 replicates) and posterior probabilities (after 10,000,000 generations before convergence) can be seen at the nodes of 
ML and Bayesian trees respectively. Sequences used in phylogenetic analysis, along with alignment, can be found in Supplementary File 1. Phylogenies 
rooted with known Neuturin and GDNF outgroups. Lophotrochozoan sequences underlined in red. Scale bars represent substitutions per site at given 
distances.
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two known rounds of lineage-specific whole genome duplication 
in that species (Flot et al., 2013), in contrast to the unknown origin 
of gene duplications in other Lophotrochozoan clades. A. vaga, 
like B. plicatilis, possesses BMP 3, Nodal and Activin/Inhibin 
sequences. We have used B. plicatilis sequences to represent 
the Rotifera in our trees as its relatively slow rate of molecular 
evolution aided the resolution of other nodes in this figure, but 
have included these three closely-related A. vaga genes to show 
evidence that they cannot be categorised into known clades. We 
find the absence of BMP 2/4 (Dpp) homologues in the Rotifera as 
a whole particularly interesting, as these genes play a key role in 
establishing dorsoventral polarity in a phylogenetically broad range 
of species, in concert with Chordin. 

It should also be noted that as well as these rotifer sequences, 
several other sequences are not shown in our analysis in Fig. 3, but 
are provided in Supplementary File 1. The first of these sequences 
is a P. vulgata Myostatin-like homologue, whose sequence was 
partially recovered from our genomic and transcriptomic data, but 
which covers only a portion of the mature ligand sequence and 
was therefore excluded from analysis. The second is a C. teleta 
gene, protein ID 198732, which appears to be a markedly diver-
gent TGF-b class ligand. Its annotation in the C. teleta genome 
suggests that it has been noted as expressed in the EST studies 
used as the basis for gene prediction, but it appears to have lost 
a significant portion of the mature ligand region. This may be the 
result of pseudogenisation in progress, as without the portions 
of the ligand domains, it is unlikely the protein it encodes is fully 
functional in the same manner as canonical TGF-b class ligands. 
The oyster C. gigas also shows evidence of diversification in TGF-b 
class ligands (data not shown here, see Fleury et al., 2008), al-
though when these sequences are added to our analysis no further 
structure was added to our tree - these seem to be fast-evolving, 
highly derived sequences, with uncertain homology to the other 
lophotrochozoan data presented in this paper.

ALP seems to be an insect innovation, forming a clade with clear 
support and no orthologue seen in any lophotrochozoan or deu-
terostome species. Muellerian inhibiting factor has been suggested 
to be a deuterostome or even vertebrate-specific ligand, but weak 
support groups the C. teleta Unknown Activin/Inhibin/Myostatin-like 
4 with this sequence in the Bayesian analysis. Whether this is a 
true relationship, or instead is a result of long-branch attraction is 
uncertain, but could be tested with increased genomic sequencing 
across the Lophotrochozoa.

As with the BMP-like ligands (shown in Fig. 2), TGF-b-like 
ligands seem to have been lost from both rotifer species consid-
ered and S. mansoni, with those that are found not falling into 
identifiable clades. This echoes the findings of previous studies in 
schistosomes (Freitas et al., 2007). It has been suggested that S. 
mansoni could use host ligands as part of its signalling cassette 
(Osman et al., 2006), which would explain low diversity of these 
ligands in this species. The lack of rotifer TGF-b ligands is more 
unusual, and future sequencing efforts in the Rotifera will reveal 
whether this loss is real, or an artefact of insufficient sequencing 
depth. It should be noted that the rotifer receptor complement is 
also slightly modified, and could reflect changes to ligand sequence 
and structure in concert with downstream aspects of this cascade.

Some support is found for a mollusc-specific clade of ligands, 
encompassing L. gigantea Unknown Activin/Inhibin/Myostatin-like 
A and B and similarly named sequences in P. vulgata. The roles of 

these genes in vivo are as yet uncatalogued, and no homologue 
is found in the genome of C. gigas. These sequences therefore 
could represent a gastropod or patellogastropod novelty. In some 
prior analyses (data not shown), platyhelminth sequences form 
a sister group to this clade with poor (< 20 bootstrap support), 
but further evidence from other lophotrochozoans is needed to 
determine whether this is a genuine relationship.

Outside of these clades, little signal can be recovered to sup-
port relationships between a diverse range of other ligands in the 
Lophotrochozoa. On the basis of the lack of clades forming, even 
between such relatively closely related species as C. teleta and 
P. lamarcki, and especially between P. vulgata and L. gigantea, it 
seems that these ligand sequences are highly variable between 
lophotrochozoan species. These sequences are named without 
reference to their evolutionary relationships, and the terms ‘A, B, C’ 
etc in multiple species are used to allow within-species numeration 
rather than any inference of orthology.

Some additional insight could potentially be drawn from the 
number of cysteine residues found in these sequences, as these 
residues have a characteristic distribution in some model organ-
isms. In some vertebrates, TGF-b ligands sensu stricto and Inhibin 
b are said to have nine cysteines, while Inhibin a (along with BMPs 
and GDFs in the BMP-like clade) have seven. These pair to form 
four and three disulfide bonds respectively. The remaining cyste-
ine residue forms such a bond only when the ligands dimerise to 
signal. Lefty proteins, as well as GDFs 3, 9 and BMP 15 are said 
to have only six cysteines - they do not bond covalently to form 
dimers (Derynck and Miyazono 2008, Moustakas and Heldin 2009). 
By our count, in the M. musculus and deuterostome sequences 
used in our analysis (Supplementary File 1), Lefty and Muellerian-
inhibiting factor proteins possess seven cysteines (lacking the fifth 
and second respectively when counting from the N terminus of the 
mature ligand), while all other deuterostome ligands in our dataset 
possess at least eight cysteine residues. This may represent the 
ancestral condition, with the more derived form studied in detail 
by those papers referenced above. These cysteine positions can 
be clearly seen in the BMP alignment file in Supplementary File 
1, in alignment positions 1, 2, 28. 32, 57, 58, 85, and 87 when 
present. For the TGF-b class alignment, these are positions 1, 2, 
27, 31, 42, 43, 69, and 71.

The majority of our Lophotrochozoan ligand sequences possess 
eight cysteine residues. Of the uncategorised sequences seen in 
Fig. 3, the four L. gigantea and P. vulgata sequences mentioned as 
forming a weakly supported clade earlier have 7 cysteines (lacking 
the fifth as counted from the N terminus), as do C. teleta Unknown 
Activin/Inhibin/Myostatin-like 4 and C. teleta Unknown Activin/In-
hibin/Myostatin-like 1, which lack the second from the N terminus. 
One sequence, C. teleta Unknown Activin/Inhibin/Myostatin-like 5, 
has only six cysteines, lacking both the second and the fifth. When 
cysteines are lost from ligands in vertebrates, they are also lost 
from the second and/or fifth position, which further reinforces that 
some cysteines are vital for maintaining the “cysteine knot” form 
of the active ligand, while others can be lost. 

Unfortunately, given the uncertainty regarding the number of 
cysteines found in canonical groups, this character cannot be 
used to further classify our ligands. A better understanding of the 
interrelationships between these ligands is probably only to be 
drawn from denser taxon sampling across the Lophotrochozoa. At 
present, the short length of the mature ligand sequence and the 
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lack of conservation of sequence in the longer propeptide means 
that phylogenetic inference, by whatever means, is limited by a 
lack of information. 

The lack of constraint on the non-cysteine portions of the 
sequences of these ligands is also interesting from a structural 
perspective. The sequence of BMP-like ligands seems highly 
constrained, probably because of their vital interactions with recep-
tors and regulators of their activity. That TGF-b class ligands in 
the Lophotrochozoan clade can diversify so much, even between 
closely related species, when the remainder of the core signalling 
cascade remains relatively stable raises questions about how these 
ligands can successfully maintain their secondary and tertiary 
structures in the face of relatively large sequence changes. This is 
especially puzzling when so many other TGF-b class ligands have, 
presumably under purifying selection, maintained a relatively stable 
sequence over evolutionary time across the Metazoa.

To summarise, of the TGF-b superclass, TGF-b-like ligands 
appear to have diversified greatly in lophotrochozoans, at least 
in the lineage leading to molluscs and annelids (Fig. 1B), while 
the BMP class ligand complement is similar to that seen in more 

traditional model organisms. In contrast, loss in ligand comple-
ments can be seen in the Rotifera and Platyhelminthes. TGF-b 
sensu stricto and Lefty genes appear to be deuterostome novelties, 
as no evidence can be found for their presence in the genomes 
here examined. How these changes in ligand diversity have af-
fected lophotrochozoan biology, and the degree to which known 
ligand families possess ancestrally shared roles mirroring those 
performed in other Superphyla, will be a topic of broad interest for 
developmental biologists in the future.

Serine/threonine kinase receptors
Each TGF-b ligand pair binds to Type I and II serine/threonine 

kinase receptors. When TGF-b ligands form a complex with 
representatives of both types of receptor, the intracellular kinase 
domains of the receptors are brought together and the Type I 
receptor is phosphorylated and activated (Massagué 1998). In 
humans, a total of seven Type I and five Type II receptors have 
been described, while Tribolium castaneum, Apis mellifera and D. 
melanogaster possess a total of five – three Type I, and 2 Type II 
(van der Zee et al., 2008).

Fig. 4. TGF-b and BMP receptor molecule interrelationships across the Metazoa, as determined by (A) maximum likelihood (Tamura et al., 
2011) and (B) Bayesian (Huelsenbeck and Ronquist 2001) methods, and rooted at the midpoint. Predominantly TGF-b-like and BMP-like cascade 
receptors shown in green and blue respectively. Alignment generated by MAFFT (Katoh and Standley 2013) using the G-iNS-i strategy resulting in a 
136 informative amino acid alignment spanning the protein kinase domain (PFAM PF00069). Both phylogenies determined using the WAG model (ML 
+4G) (Whelan and Goldman 2001). Bootstrap percentage (of 1,000 replicates) and posterior probabilities can be seen at the nodes of ML and Bayesian 
trees respectively. Lophotrochozoan sequences underlined in red. Sequences used in phylogenetic analysis, along with alignment, can be found in 
Supplementary File 1. Scale bars represent substitutions per site at given distances.
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The serine/threonine kinase receptor complements of the Lo-
photrochozoa have previously been the subject of investigation, 
with those of C. gigas already described (Herpin 2005). Coupled 
with our extensive knowledge of the diversity of these molecules in 
the freshwater sponge Ephydatia fluviatilis (Suga et al., 1999) and 
other non-bilaterian metazoans (Humineicki et al., 2009, Pang et 
al., 2011) these are perhaps the best-catalogued components of 
the TGF-b cascade. With some exceptions, the serine/threonine 
kinase receptor complement varies little across the Metazoa. 
Generally three Type I and two Type II receptors are found in any 
species, with TGF-b-like signalling occurring through a set pair 
of dimerised Type I and Type II receptors (TGF-b R1 and Act R2, 
also known by a diverse range of other names), while two Type I 
receptors (BMP R1 and the misleadingly named Act R1) can each 
be found in complex with BMP R2. 

In vertebrates, considerably more diversity of receptor number 
exists, most likely due to the 2R whole genome duplications. Larger 
numbers of receptor also exist in invertebrate deuterostomes and 
the cnidarian Nematostella vectensis, most likely due to independent 
duplications in these lineages, some of which have been traced 
to specific nodes on the deuterostome tree of life (Humineicki et 
al., 2009). 

While the canonical five serine/threonine kinase receptors are 
found in all annelid and mollusc species examined (Fig. 4), these 
have diversified in the rotifers. Both A. vaga and B. plicatilis possess 
at least one Activin R2 and TGF-b R1 gene, although the four A. 
vaga Activin R2 genes are drawn toward the base of our ML tree 
by long branch attraction. One B. plicatilis sequence appears to be 
a divergent BMP R1 by Blast identity and in some of our ML trees 

(data not shown), although this gene is grouped with A. vaga and 
B. plicatilis TGF-b R1 genes in the Bayesian tree shown in Fig. 4. 
This gene could therefore represent a diverged copy of a rotifer 
TGF-b R1 gene after duplication in that lineage, or alternately rotifer 
receptors could be becoming more similar through gene conversion. 
The divergent nature of the TGF-b ligands found in these species 
may suggest that their receptor sequences are evolving to signal 
in a derived fashion, although the true causes of these changes 
requires further research.

Schistosome receptor complements have been studied else-
where in depth (Davies et al., 1998, Forrester et al., 2004), and 
in many ways their complements represent a surprising finding, 
given the presence in S. mansoni of only two TGF-b-like ligands. 
These complements do not map exactly onto the canonical cas-
sette, but, as hypothesised in Osman et al., (2006) and earlier in 
this manuscript, their quantity, when compared to the few ligands 
encoded in its genome, may suggest that these molecules respond 
to host, rather than endogenous, signalling cues.

In short, the relative conservation of serine/threonine kinase 
receptor sequences within annelids and molluscs confirms the 
suggestion of Herpin et al., (2005) with regard to the broad con-
servation of serine/threonine kinase receptor diversity across 
metazoan evolution. 

Smad proteins
Smad proteins play a key role in transducing extracellular signals 

into an intracellular response. Of all the parts of the TGF-b signal-
ling cascade investigated in the present study, it is these molecules 
that show the least amount of loss and disparity in number across 

Fig. 5. Smad and Dad interrela-
tionships across the Metazoa, 
as determined by (A) maximum 
likelihood (Tamura et al., 2011) 
and (B) Bayesian (Huelsenbeck 
and Ronquist 2001) methods. 
Alignment generated by MAFFT 
(Katoh and Standley 2013) using 
the G-iNS-i strategy, with the sec-
tion used for analysis a 139 infor-
mative amino acid region spanning 
the MH2 domain (Pfam PF03166). 
Both phylogenies determined us-
ing the WAG mode (Whelan and 
Goldman 2001), rooted with the 
known Smad 6/7 clade (ML) and at 
midpoint (Bayesian). Bootstrap per-
centage (of 1,000 replicates) and 
posterior probabilities can be seen 
at the nodes of ML and Bayesian 
trees respectively. Lophotrocho-
zoan sequences underlined in red. 
Sequences used in phylogenetic 
analysis, along with alignment, can 
be found in Supplementary File 1. 
Scale bars represent substitutions 
per site at given distances.
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the Metazoa, presumably due to the pleiotropic effects that would 
happen if loss were to occur. Smad molecules respond to a di-
verse range of incoming signals, as can be seen in Fig. 1A, and 
even if loss of one ligand occurs in a lineage, a Smad may still 
be responsible for passing on the message brought by another 
ligand. Such pleiotropy means that loss may be less tolerated by 
natural selection at this step of the signalling cascade than others.

All lophotrochozoan Phyla studied in the present investigation 
were found to contain at least one of each of the four major families 
of Smad molecule (Fig. 5). Interestingly, the rotifer A. vaga (but 
not B. plicatilis) has lost Smad 6/7 (Dad) and thus is unlikely to 
inhibit Smad signalling using this mechanism. The short branch 
lengths generally found outside the inhibitory Smad (Smad6/7 or 
Dad) clade also point to generally constrained selection on these 
molecules. Both B. plicatilis and S. mansoni show longer branch 
lengths for these sequences, however, which may be a result of 
co-evolution to interact with the divergent receptor cassettes also 
seen in these Phyla. 

S. mansoni shows evidence of a lineage-specific Smad2/3 du-
plication, which is perhaps surprising in light of the reduced ligand 
complement of this species, and may represent a subfunctionali-
sation of roles previously performed by a single ancestral gene. 
We note that we do not recover a monophyletic clade of Smad 
2/3 sequences in our Bayesian analysis, which is largely due to 
the small differences in sequence between the R-Smad clades.

Dan/Cerl/Coco/Prdc/Cerberus/Gremlin
Members of the wider DAN-like gene class sequester ligands, 

preventing them from binding to receptors and activating signalling 

cascades. This class has diverged into a large and confusingly 
named clade of genes, especially in vertebrates, where the 2R 
whole genome duplication event likely allowed sub- and neo-
functionalisation to occur. The results of phylogenetic analyses 
of members of this gene class from species across the Metazoa 
(Fig. 6) reveal how this difficult-to-catalogue group has evolved.

It appears that the cassette of DAN-class members found in 
the common ancestor of deuterostomes and protostomes may 
have resembled that of N. vectensis, with two homologues giving 
rise to the diversity we see today. It is possible that the Cerberus/
Dante family represents a deuterostome innovation - despite the 
placement of N. vectensis Cerberus/Dante-like (ABF06563.1) at 
the base of this clade. Given the widespread presence of Gremlins 
across the Metazoa, and previous study in this group in Cnidarians 
(Rentzsch et al., 2006), it perhaps would be parsimonious to infer 
that it is in fact a Gremlin, rather than inferring loss of a cnidarian 
Gremlin and protostome Cerberus/Dante-like factors. We cannot 
distinguish between these alternatives definitively with the data 
available, but this hypothesis could be easily tested with the advent 
of broader sequence availability.

No wider DAN class genes can be found in schistosomes or in 
the rotifers A. vaga or B. plicatilis, and loss of portions of this class 
are prevalent in other species - D. melanogaster, for example, has 
no DAN class genes in its genome (van der Zee et al., 2008), and 
DANs sensu stricto have been lost across the Lophotrochozoa 
(Table 1). DANs sequester a variety of ligands, with specific-
ity varying depending on the DAN protein examined. Some are 
specific to the BMP-like signalling pathway, while others (such as 
Cerberus) can inhibit Nodal in the TGF-like pathway. Gremlin is 

 Homo sapiens Prdc NP071914.3
 Mus musculus Prdc NP035955.1
 Gallus gallus Prdc XP419552.3
 Danio rerio Prdc NP001017704.1

 Danio rerio Gremlin NP998017.1
 Gallus gallus Gremlin NP990309.1
 Mus musculus Gremlin NP035954.1
 Homo sapiens Gremlin NP037504.1

 Branchiostoma floridae Gremlin XP002604466.1
 Culex quinquefasciatus Gremlin XP001842189.1

 Tribolium castaneum Gremlin EFA02797.1
 Saccoglossus kowalevskii Gremlin NP001161561.1

 Lottia gigantea Gremlin 88176
 Patella vulgata Gremlin

 Pomatoceros lamarckii Gremlin
 Capitella teleta Gremlin 57284/205003

 Helobdella robusta Gremlin AEL12445.1
 Nematostella vectensis Dan XP001641376.1

 Saccoglossus kowalevskii Dan NP001158417.1
 Homo sapiens Dan NP001191015.1

 Danio rerio Dan NP996980.1
 Apis mellifera Dan XP001121480.1

 Tribolium castaneum Dan XP972176.1
 Nematostella vectensis Cerberus/Dante-like ABF06563.1

 Saccoglossus kowalevskii Cerberus/Dante-like NP001164702.1
 Branchiostoma floridae Cerberus/Dante-like ACF94996.1

 Homo sapiens Dante NP689867.1
 Mus musculus Dante NP957679.1

 Gallus gallus Cerberus NP990154.1
 Homo sapiens Cerberus NP005445.1
 Mus musculus Cerberus NP034017.191
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Fig. 6. DAN class interrelation-
ships across the Metazoa, as de-
termined by maximum likelihood 
(Tamura et al., 2011) and Bayesian 
(Huelsenbeck and Ronquist 2001) 
methods. Alignment generated by 
MAFFT (Katoh and Standley 2013) 
using the G-iNS-i strategy. Phylog-
enies calculated on the basis of an 
87 informative amino acid alignment 
spanning the DAN domain (Pfam ID 
PF03045). Phylogeny shown is the 
result of ML analysis, with differences 
in topology using Bayesian methods 
indicated with a dotted line. Both phy-
logenies determined using the WAG 
mode (Whelan and Goldman 2001) 
and rooted at midpoint. Posterior 
probabilities/bootstrap percentage 
(of 1,000 replicates) and can be seen 
at the base of nodes. Lophotrocho-
zoan sequences underlined in red. 
Sequences used in phylogenetic 
analysis, along with alignment, can be 
found in Supplementary File 1. Scale 
bars represent substitutions per site 
at given distances.
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known to be active in H. robusta, targeting BMP 2/4 preferentially 
(Kuo and Weisblat 2011). Much investigation is required before 
inference can be made as to the wider roles of genes that remain 
in the Lophotrochozoa, given the wide range of actions that these 
genes are known to have in more established model organisms.

Chordin
Chordin is a BMP regulatory molecule, which sequesters ligands 

by binding to them. It is best known for its role antagonising BMP 
2/4 (also known as Dpp) in dorsoventral patterning. A similar mol-
ecule, Chordin-like, has also been identified, initially as a BMP 4 
antagonist in the chick (Sakuta et al., 2001). 

Searches through the lophotrochozoan genomes examined in 
the present project suggest that both Chordin and Chordin-like 
genes are present within the Lophotrochozoa, as can be seen in 
Fig. 7A. Chordin itself seems to be lost across the Annelida. No 
Chordin or Chordin-like sequences were found in the rotifers A. 
vaga and B. plicatilis or in the Platyhelminthes, although other more 
derived families related to Chordin (eg CRIM) were not examined 
in the above analysis. The presence of clear Chordin-like genes 
in the Mollusca confirms the hypothesis that Chordin-like genes 
were present in the Bilaterian common ancestor, rather than being 
a deuterostome novelty, and is corroborated by the assignment 
of T. adhaerens and Amphimedon queenslandica Chordin-like 
homologues within this family by other authors, rather than as a 
canonical Chordin (sensu Richards and Degnan 2009).

Twisted gastrulation (Tsg)
Tsg is a modulator of BMP signalling, although its mode of ac-

tion is yet to be fully understood. As well as binding BMPs, it has 
been suggested that Tsg might also act as a promoter of BMP 

signalling, by freeing ligands from Chordin after the Chordin-ligand 
complex has been cleaved by Tolloid (Oelgeschläger 2000). This 
could also occur in some of the lophotrochozoan clades presented 
here, although annelids lack canonical Chordin homologues while 
possessing Tsg. This mooted role could therefore be absent in this 
Phylum, although Chordin-like may be targeted by Tsg instead.

The phylogenetic relationships of a number of metazoan Tsg 
sequences can be seen in Fig. 7B. Mollusc and annelid species all 
possess a single Tsg homologue, while all schistosomes examined 
and the rotifers B. plicatilis and A. vaga appear to have lost theirs, 
as none can be found in their genomes or transcriptomes. This 
could be correlated to the markedly reduced BMP complements 
of these species – without the ligand diversity found in other spe-
cies, it is perhaps unsurprising that regulatory mechanisms have 
also been lost.

Noggin
Noggins are proteins that act to interfere with canonical TGF-b 

signalling by sequestering ligands before they can bind to their 
receptors, as with Chordin above. Noggins primarily have been 
shown to interact with BMP-like ligands. Our data (Fig. 7C) confirms 
the study of Molina et al., (2011), who posited the existence of two 
major clades of Noggin across the Metazoa, a canonical Noggin 
clade, and a less well-categorised Noggin-like clade. We find both 
kinds in all lophotrochozoans examined with the exception of S. 
mansoni, which has two Noggin-likes but no Noggin, and the roti-
fers A. vaga and B. plicatilis, which lack Noggins entirely. It is well 
documented that canonical Noggins and Noggin-like proteins are 
absent from the genomes of some ecdysozoan model organisms 
(van der Zee et al., 2008) although these are found in some other 
arthropods (Duncan et al., 2013): the presence of a Noggin in the 
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Homo sapiens 33 8 13 1 2 1 0 1 2 1 2 1 3 1 3 2 Huminiecki et al 2009 

Ciona intestinalis 10 5 7 1 1 1 0 0 1 0 0 1 1 0 1 1 Hino et al 2003/Huminiecki 
et al 2009 

Strongylocentrotus 
purpuratus 

14 4 6 1 1 0 1 1 1 1 0 1 3 0 2 1 Lapraz et al 2006 
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 Drosophila melanogaster 7 4 5 1 0 0 0 1 0 0 0 3 2 0 1 1 van der Zee et al 2008 

Apis mellifera 7 4 5 1 0 0 0 0 0 1 0 1 1 1 1 1 van der Zee et al 2008 

Tribolium castaneum 8 4 5 1 0 0 0 1 1 1 0 1 1 1 1 1 van der Zee et al 2008 

Caenorhabditis elegans 5 7 3 0 0 0 0 0 1 0 0 0 1 0 1 0 Savage-Dunn 2005, 
Huminiecki et al 2009 
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ns

 Capitella teleta 16 4 5 0 1 1 1 1 1 0 0 1 2 1 1 1   

Pomatoceros lamarckii   9 4 5 0 0 1 1 1 1 0 0 1 1 1 1 1   

Lottia gigantea 10 4 5 1 1 1 1 1 1 0 0 1 1 1 1 1   

Patella vulgata 12 4 5 1 0 1 1 1 1 0 0 1 1 1 1 1   

Brachionus plicatilis 4 4 3 0 0 0 0 0 0 0 0 0 0 0 1 0   

Adenita vaga 10* 10 8 0 0 0 0 2 0 0 0 0 0 0 2 0 Flot et al 2013  *NB see 
Supplementary File 1 

Schistosoma mansoni 2 5 5 0 0 1 2 1 0 0 0 0 1 0 1 0   
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Nematostella vectensis 6 4 6 1 0 1 1 1 1 1 0 0 1 0 1 0 Huminiecki et al 2009, Saina 
and Technau 2009 

Mnemiopsis leidyi 9 5 4 0 0 0 0 0 0 0 0 0 1 0 1 1 Pang et al 2011 

Trichoplax adherens 5 4 4 0 1 1 0 1 0 1 0 0 0 0 1 1 Huminiecki et al 2009 

TABLE 1

TGF-b signalling complements of a range of metazoan species, as determined in the present manuscript or from previously published work as cited at right, where well annotated examples of these 
complements have been determined from other studies. While no whole-genome analysis of this pathway has yet been performed in the Porifera, we refer the interested reader to Suga et al., 1999, 
Adamska et al., 2007, and Fig. 11 of Pang et al., 2011, where a number of the key families listed above are described in this Phylum.
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crustacean Daphnia pulex and Noggin and Noggin-like in the he-
mipterans Acyrthosiphon pisum and Rhodnius prolixus implies that 
this loss happened independently in some insects and nematodes.

The presence of Noggin-like sequences in schistosomes again 
raises questions as to their function – they could interact with the 
TGF-like ligands found in these species, unlike their role in BMP 
regulation in other Superphyla, or instead they may be involved in 
regulating exogenous signals or other processes entirely. We do 
not detect the diversity of Noggin sequences in other lophotrocho-
zoans that are found in S. mediterreanea, where eight Noggin and 
Noggin-like sequences are found (Molina et al., 2011). We therefore 
posit that this expansion is lineage specific, and may be related to 
species-specific roles for ligands, perhaps in regeneration.

Follistatin sequences could be identified within our B. plicatilis 
dataset, although two are present in A. vaga (CAWI010044267.1 
and CAWI010043776.1).

Only Follistatin homologues with the classical Follistatin/
Osteonectin-like EGF domain followed by three Kazal-type serine 
protease inhibitor domains were examined by the present study, 
with the exception of the N. vectensis homologue, which lacks a 
clearly identifiable EGF domain. Extensive diversification of this 
gene has taken place within the deuterostome lineage as early 
as the Ambulacraria/chordate split, with loss, rearrangement and 
gain of various domains resulting in a total of up to five follistatin-
domain containing genes, descended from an ancestral Follistatin 
sequence. The nature, role and diversification of these are yet to 
be fully investigated.

Fig. 7. Chordin (A), Twisted Gastrulation (B) and 
Noggin (C) interrelationships across the Metazoa, 
as determined by maximum likelihood (Tamura 
et al., 2011) and Bayesian (Huelsenbeck and 
Ronquist 2001) methods. Phylogeny shown is the 
result of ML analysis, with differences in topology 
using Bayesian methods indicated with a dotted 
line. Chordin phylogeny based on a 120 informative 
amino acid alignment of the von Willebrand factor 
type C/D domains and C8 domains generated by 
MAFFT (Katoh and Standley 2013) using the G-iNS-i 
strategy, analysed under the JTT model (Jones et al., 
1992, ML) and Dayhoff model (Dayhoff et al., 1978, 
Bayesian) with tree shown rooted with H. sapiens 
BMP-binding endothelial regulator (NP 597725.1). 
Tsg phylogeny based on a 146 informative amino 
acid global alignment generated by MAFFT using the 
G-iNS-i strategy, rooted with H. sapiens IGFBP (NP 
000587.1) after Vilmos et al., (2001), with both phy-
logenies determined using the WAG model (Whelan 
and Goldman 2001). Noggin phylogeny based on a 103 
informative amino acid global alignment generated by 
MAFFT using the G-iNS-i strategy rooted at midpoint, 
followed by analysis using the WAG model in both 
analyses. Posterior probabilities/bootstrap percentage 
(of 1,000 replicates) and can be seen at the base of 
nodes. Lophotrochozoan sequences underlined in 
red. Sequences used in phylogenetic analysis, along 
with alignment, can be found in Supplementary File 
1. Scale bars represent substitutions per site at given 
distances.
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 Patella vulgata Noggin A

 Capitella teleta Noggin A 155479

 Pomatoceros lamarckii Noggin A

 Daphnia pulex Noggin 55080

 Nematostella vectensis Noggin 1 ABF61775.1

 Nematostella vectensis Noggin 2 ABF61776.1

 Strongylocentrotus purpuratus Noggin XP784090.2

 Xenopus tropicalis Noggin 4 NP001037873.1

 Takifugu rubripes Noggin 4 AAX07475.1

 Patella vulgata Noggin B

 Lottia gigantia Noggin B 127771

 Pomatoceros lamarckii Noggin B

 Schistosoma mansoni Noggin B2 XP002570128.1

 Schistosoma mansoni Noggin B1 XP002578816.1
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Follistatin binds to and inhibits TGF-b 
ligands, particularly Activins, although it can 
bind to other ligands, even those in the BMP-
like class. Canonical Follistatin sequences are 
found in the Lophotrochozoa, as can be seen in 
the phylogenetic tree presented in Fig. 8A. We 
note that Platyhelminthes possess Follistatin, 
despite not having a canonical Activin ligand 
for it to bind to. As noted earlier, it is suspected 
that parasitic platyhelminths can utilise host 
ligands, so it is possible that these Follistatins 
inhibit the action of these, but it is perhaps more 
likely that Follistatins bind the more derived 
Activin-like ligands found in these species. No 
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Tolloids
Tolloids are found extracellularly, and cleave 

regulators of TGF-b signalling when they have 
formed complexes with free ligands, releasing the 
ligand they have bound and allowing signalling to 
occur. This action is vitally important in regulating 
a range of developmental processes, including 
the establishment of dorsoventral polarity, Fig. 8B 
shows the result of phylogenetic analysis of Tolloid 
sequences from a range of metazoan species, 
rooted with the homologue found in N. vectensis. 

A single Tolloid homologue was found in both 
mollusc species examined, in P. lamarcki, and in 
all schistosome species (S. mansoni shown on 
tree). It appears to have been lost from rotifer 
genomes, although A. vaga possesses a number 
of similar metalloproteinases with high similarity 
to nematode NAS proteins and teleost hatching 
enzymes that may have been acquired by hori-
zontal gene transfer from those species. C. teleta 
possesses two homologues, one with the canonical 
domain structure (inset, Fig. 8B) and one with a 
highly divergent structure, although this does not 
appear to be the result of mis-annotation of the 
C. teleta genome, and no equivalent is found in 
H. robusta or P. lamarcki. Two Tolloids (Tolloid 
and Tolkin) are found in D. melanogaster, and 
our analysis corroborates the suggestion of van 
der Zee et al., (2008) that this Tolkin homologue 
is in fact a lineage specific paralogue, specific to 
the Diptera rather than found protostome-wide. 

The roles played by Tolloid in lophotrochozoan 
development are yet to be fully explored, but 
Herpin et al., 2007 have noted that C. gigas Tol-
loid is capable of ventralising zebrafish embryos. 
Furthermore, C. gigas Tolloid is maternally depos-
ited into the oocyte, and may play an early role in 
patterning body axes in this species. A conserved 
role for Tolloid in dorsoventral polarity establish-
ment in the Lophotrochozoa is therefore possible, 
although more investigation is required to confirm 
this, especially outside the Mollusca.

SMURFs
SMURF (SMAD specific E3 ubiquitin protein 

ligase) proteins regulate TGF-b signalling by a 
number of mechanisms, generally involving the 
targeting of R-Smads for degradation, but other 
roles have also been posited for these proteins. 
Two SMURF genes are characterised in verte-
brates, but to date only single orthologues have 

Fig. 8. Follistatin (A), Tolloid (B) and Smurf (C) interrelationships across the Metazoa, 
as determined by maximum likelihood (Tamura et al., 2011) and Bayesian (Huelsenbeck 
and Ronquist 2001) methods. Phylogeny shown is the result of ML analysis, with differ-
ences in topology using Bayesian methods indicated with a dotted line. Follistatin phylogenies 
inferred on the basis of a MAFFT alignment (Katoh and Standley 2013, E-INS-i strategy) with 
227 informative sites, analysed under the WAG model (Whelan and Goldman 2001), rooted 
with N. vectensis Follistatin (XP 001624524.1). Tolloid phylogeny shown generated according 
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to the JTT model (Jones et al., 1992, ML)/Blosum model (Henikoff and Henikoff 1992, Bayesian) from a 150 informative amino acid alignment spanning 
the calcium-binding EGF domain and immediately proceeding the Cub domain as shown on inset, generated using MAFFT under the G-INS-i strategy 
and rooted with N. vectensis Tolloid (EDO41783.1). Inset shows the domain structure of canonical Tolloid proteins, along with that of the C. teleta 
divergent paralogue, presented from the Pfam database. The Smurf phylogeny was calculated under the JTT model, based on a 233 informative amino 
acid alignment generated using MAFFT using the G-INS-i strategy with outgroup specified as H. sapiens Wwp2 (AAC51325.1). Posterior probabilities/
bootstrap percentage (of 1,000 replicates) and can be seen at the base of nodes. Sequences used in phylogenetic analysis, along with alignment, 
can be found in Supplementary File 1. Lophotrochozoan sequences underlined in red. Scale bars represent substitutions per site at given distances.



The Lophotrochozoan TGF-b signalling cassette    545 

been found in sequenced invertebrate species. Our phylogenetic 
analysis (Fig. 8C) of these genes from species across the Metazoa 
suggests a paralogous relationship between the two homologues 
found in vertebrate model species.

SMURF proteins appear to have originated within the early meta-
zoan lineage, and clear homologues can be identified for these in 
Hydra magnipapillata, M. leidyi and T. adhaerens, although not to 
date in N. vectensis. While single canonical SMURF orthologues are 
readily identifiable in a variety of protostome species, no SMURF 
proteins can be found in the genomes of C. elegans, A. vaga, B. 
plicatilis or the schistosome species. These species do, however, 
possess other E3 ubiquitin-protein ligases that readily cluster with 
nedd-4-like E3 ubiquitin-protein ligases, and are probably homo-
logues of this class of protein. We note that two Crepidula fornicata 
(Mollusca) SMURF homologues are present in the NCBI nr dataset, 
although one (ADI48175.1) is only a fragmentary sequence with 
100% similarity to its homologue at the amino acid level, and as 
such was not used in our phylogenetic analysis.

BMP and activin membrane-bound inhibitor (BAMBI)
BMP and activin membrane-bound inhibitor is a pseudoreceptor 

that competes with true Type II receptors for ligand binding (Onich-
tchouk et al., 1999). The presence of this gene has been noted in 
protostomes previously, particularly by van der Zee et al., (2008) 
and Huminiecki et al., (2009). Searches through the genomes of a 
variety of non-bilaterian metazoans revealed no trace of a BAMBI 
homologue, and it thus seems likely that BAMBI emerged on the 
lineage leading to the last common ancestor of protostomes and 

deuterostomes. 
Fig. 9A shows the results of phylogenetic inference into the 

inter-relationships of BAMBI homologues from a variety of spe-
cies in the Protostomia and Deuterostomia. No BAMBI orthologue 
could be identified in C. elegans, or in the Schistosome species 
or Rotifera sampled. 

We note that a putative BAMBI sequence has been described 
in a previous publication in S. mediterranea (Gavino and Red-
dien 2011), but in our investigations this sequence (ADX42731.1) 
appears to more readily resemble canonical serine/threonine 
kinase receptors, clustering with these sequences in the course 
of phylogenetic analysis, although the partial sequence provided 
does not include the intracellular serine/threonine kinase domain 
required for signalling. We are unable to test whether this domain 
absence is the result of fragmentary sequence or is truly present 
in the complete protein, but if it is the latter this may represent the 
re-evolution of a trait present more generally across the Metazoa.

NOMO
NOMO (Nodal Modulator, previously known as pM5) is known 

for its role in directly antagonising Activin/Nodal signalling, in con-
cert with Nicalin, with which it forms a transmembrane complex 
at the endoplasmic reticulum (Haffner 2004). These complexes 
are similar to complexes that regulate g-secretase activity, but 
do not perform the same roles, as shown in Zebrafish rescue as-
says. Instead they have been shown to regulate the formation of 
mesendoderm by attenuating Nodal signalling. NOMO is, however, 
still under-researched, with little known of its molecular mode of 

Fig. 9. Bambi (A) and NOMO (B) interrelationships 
across the Metazoa, as determined by maximum 
likelihood (Tamura et al., 2011) and Bayesian 
(Huelsenbeck and Ronquist 2001) methods. 
Phylogeny shown is the result of ML analysis, with 
differences in topology using Bayesian methods 
indicated with dotted lines. Bambi phylogenies 
determined using the JTT model (Jones et al., 
1992), NOMO phylogenies under the WAG model 
(Whelan and Goldman 2001). Bambi phylogeny 
based on 73 informative amino acid alignment cre-
ated using MAFFT (Katoh and Standley 2013) under 
the L-INS-i model, spanning the transmembrane 
domain, incorporating some conserved regions both 
extra- and intracellularly. NOMO phylogeny based on 
G-INS-i alignment by MAFFT, with 439 informative 
positions. Bambi phylogeny rooted with H. sapiens 
TGF-b receptor 1 NP004603.1, NOMO tree with an 
apparent NOMO sequence found in Arabidopsis 
thaliana (NP_191795.1). Numbers at node reflect 
Bayesian posterior probabilities/bootstrap support 
(1,000 replicates, JTT model/WAG model, all default 
priors) respectively. Lophotrochozoan sequences 
underlined in red. Posterior probabilities/bootstrap 
percentage (of 1,000 replicates) and can be seen 
at the base of nodes. Sequences used in phyloge-
netic analysis, along with alignment, can be found 
in Supplementary File 1. Scale bars represent 
substitutions per site at given distances.
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B. plicatilis and the planarian S. mansoni. Extensive loss seems to 
have occurred at the ligand and regulatory levels in these Phyla, 
with Smad and receptor diversity relatively unchanged, particularly 
in S. mansoni.

These apparent lost genes could be missing from our datasets 
due to inadequate assembly of these genomes. This is more likely 
for B. plicatilis than for S. mansoni, as this genome results from 
a much deeper sequencing effort. Other planarian genomes also 
exist, allowing assessment by comparison to outgroups in cases of 
loss. Analyses of the B. plicatilis dataset, however, implies that the 
substantial majority of genes present in that species are recovered 
by the genome dataset used here, and while some missing genes 
are perhaps to be expected from our analysis, we would not expect 
these to be numerous. 

It should be noted that the TGF-b componentry of S. mansoni 
is very similar to that of S. japonicum and in most cases to that 
of S. mediterranea, and it has been chosen as a representative 
and very well described member of its Phylum for the purposes of 
comparison. While some differences exist – S. mediterranea, for 
example, has eight Noggin sequences listed on Genbank – these 
appear to be the result of lineage specific loss or gain, and the S. 
mediterranea genome is still generally cited as a draft resource. 
It is possible that more basal planarian species will exhibit a more 
complete TGF-b complement than the species currently sampled.

Any loss of regulatory elements is of interest, as the fine-scale 
regulation of TGF-b ligands is known to play a variety of key roles 
in the establishment of bodily axes in other Phyla, for example, 
in the establishment of dorsoventral polarity and the germ layers 
in Xenopus laevis (Hill 2001). How lophotrochozoans accomplish 
these tasks, perhaps without the aid of these modulators of signal-
ling, remains to be established.

While the internal phylogeny of the lophotrochozoan clade is 
yet to be fully resolved, most studies place molluscs and annelids 
as sister groups (in the Trochozoan clade, along with brachiopods, 
phoronids and nemerteans), with planarian and rotifer data implying 

action (Dettmer 2010).
Phylogenetic analysis of NOMO sequence from a range of 

metazoans can be seen in Fig. 9B, rooted with an apparent NOMO 
sequence found in Arabidopsis thaliana. NOMO is found in every 
genome examined in this work, implying a crucial role in cell sig-
nalling, even in species where Nodal is not found (for example, 
in the Ecdysozoa).

NOMO-like sequences are well described outside the Metazoa 
and are suggested to be found throughout the Eukaryota (Homolo-
Gene:13810). It seems that NOMO is particularly poorly named 
given its conservation outside of clades where Nodal exists, and 
in many cases where TGF-b signalling is entirely absent. Some 
recent analyses have suggested that NOMO is involved in the 
regulation of nicotinic acetylcholine receptor functionality (Almedom 
et al., 2009, for example), and this, along with the widespread con-
servation of NOMO throughout the Eukaryota, suggests that this 
complex has been recruited by metazoans for further regulation 
of TGF-b signalling – although much mechanistic work is required 
to untangle how this regulation is performed.

Discussion

General Lophotrochozoan TGF-b componentry and the evolu-
tion of TGF-b signalling

The results of our analysis of lophotrochozoan TGF-b cas-
settes can be seen in Table 1 and for TGF-b ligands in particular 
in Fig. 10. In general, the complements of the annelid and mollusc 
species considered in our analysis resemble that of invertebrate 
deuterostomes more than they resemble those of ecdysozoan 
models. Ligand diversity seems more pronounced than that seen 
in the Ecdysozoa, and many regulatory components, such as the 
noggin class, seem to be the result of Ecdysozoa-specific, rather 
than protostome-wide, loss. 

The most striking differences between the cassettes of other 
metazoans and our sampled datasets are in the case of the rotifer 
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Fig. 10. TGF-b ligand family presence and absence in a range of metazoan species, as deter-
mined in the present manuscript or inferred from previously published work. Only species with 
clearly informative TGF-b ligand identity known are listed above. Confirmed identity is shown in green 
(no lines), tentative identity in orange (single diagonal line) and absence in red (two diagonal lines, 
forming a cross).

that these Phyla are only distantly related to 
the Trochozoa sensu stricto. While our sam-
pling may not allow us to trace the evolution 
of the lophotrochozoan TGF-b complement 
across the entirety of its constituent Phyla, 
we can be confident that the last common 
ancestor of the Trochozoa, Rotifer and 
Platyhelminthes will be relatively closely 
related in molecular complement to the 
Urlophotrochozoan (the common ancestor 
of all lophotrochozoans), and our sampling 
thus allows us to draw inference as to the 
cassette of that hypothetical organism, by 
mapping gain and loss onto a schematic 
phylogeny (Fig. 11).

Our work therefore suggests that we 
might expect the TGF-b signalling comple-
ment of the Urlophotrochozoan to be com-
plete, with only the Dan clade completely 
missing from the ancestrally shared regula-
tory cassette across all lophotrochozoan 
Phyla, and no lophotrochozoan-wide loss 
seen in the ligand complement. Loss is, 
however, prevalent in gene families in the 
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planarians and in the rotifer species sampled, implying that a di-
verse TGF-b complement may not be necessary for these clades, 
although the reasons why these genes have been lost while being 
so well conserved in other lineages remains unknown.

It should be noted that our findings suggest that the use of the 
phrase “TGF-b signalling” represents a historical accident, rather 
than a unified nomenclature reflecting a diversity of TGF-b ligands. 
The considerable momentum of the published literature means that 
this classification scheme is unlikely to be challenged, but we would 
suggest that “BMP signalling” is a more representative term for the 
ligand superclass and cascade as a whole, with TGF-b ligands be-
ing a probable deuterostome novelty. The TGF-b-like class would 
then perhaps be more properly termed the Activin/Myostatin-like 
class. However, we recognise the historical contingencies inher-
ent in the current naming scheme, and have named our ligands 
accordingly in this manuscript.

In general, however, the TGF-b ligand signalling cassette is well 
conserved in the Lophotrochozoa, which will allow us to compare 
functional roles and expression of these elements between this 
Superphylum and the Deuterostomia and the Ecdysozoa – a 
practice that has not always been possible when only these lat-

ter Superphyla were described, as often one or other lacked a 
gene completely. This has and will continue to allow us to infer 
ancestral roles for a variety of genes, a vital step in understanding 
how animal life in general, and the TGF-b signalling cascade in 
particular, has evolved.

Conclusions

Here we have presented the first systematic treatment of the 
TGF-b signalling cascade in the Lophotrochozoa. This work will 
provide the building blocks to allow us to understand a variety of 
developmental and homeostasis-related signalling cascades in 
these species, and also provide a valuable resource for tracing 
the ancestral functionality of the TGF-b pathway.

We have shown that while some aspects of the TGF-b signalling 
pathway are very highly conserved in the Lophotrochozoa when 
compared to other Superphyla and basal clades, some aspects, 
notably the TGF-b-like ligand complement, are highly derived, and 
differ greatly, even when compared between closely related species.

The loss of regulatory elements of the TGF-b signalling cascade 
is also particularly intriguing, as without the modulation of signalling 

Fig. 11. Gain and loss of TGF-b ligands (A) and modulators of TGF-b signalling 
(B) across the Metazoa, mapped onto a schematic cladogram of the inter-
relationships of these Superphyla. Position of TGF-b itself is contingent on the 
true assignation of TGF-b status to M. leidyi protein sequence by Pang et al., 2011, 
as this hypothesis is only weakly supported by our analysis.
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provided by these molecules lophotrochozoans may have 
evolved alternative means of interpreting the levels of signal 
provided by TGF-b ligands, without relying on gradient control. 
Further research will be required to discern how this occurs.

This data will act as the starting point for a number of 
investigations into the function, evolution and diversification 
of these molecules in this under-represented Superphylum, 
and fills in the last major gap remaining in our understanding 
of the diversity of this cascade across metazoan life.

Materials and Methods

Gene identification
Gene sequences were derived from P. lamarcki, P. vulgata, B. 

plicatilis (Transcriptome sequences as described in Werner et al., 
2012, Kenny and Shimeld 2012, genomic sequence manuscripts in 
prep), S. mansoni (Berriman et al., 2009), L. gigantea and C. teleta 
(Simakov et al., 2013) genomic sequences, downloaded to a local 
server. A. vaga sequences were taken from http://www.genoscope.
cns.fr. These were identified using tBlastn (Altschul et al., 1990) of 
conserved regions of known gene sequence against each dataset. 
Genes thus putatively identified were then reciprocally blasted 
against the NCBI nr database using Blastx to further confirm their 
identity. Conversion into protein sequence was carried out using the 
EMBOSS Transeq (http://www.ebi.ac.uk/Tools/st/emboss_transeq/) 
tool, assuming standard codon usage. 

Phylogenetic analysis
Gene sequences were aligned with those of known identity 

downloaded from the NCBI nr database, using MAFFT version 7 
(Katoh and Standley 2013) under the G-INS-i strategy unless oth-
erwise stated, and alignments saved in fasta format and imported 
into MEGA 5 (Tamura et al., 2011) for alignment curation. Conserved 
domains were identified and alignments trimmed to these areas for 
further analysis, with sections of alignment containing gaps excluded 
in all cases for the purpose of phylogenetic inference.

Maximum likelihood analysis was performed using MEGA5 
(Tamura et al., 2011) using the WAG model (Whelan and Goldman 
2001) unless otherwise stated, 1,000 bootstrap replicates and all 
other default prior settings. Bayesian phylogenetic analysis was 
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performed with MrBayes v3.2.1-x64 software (Huelsenbeck and Ronquist 
2001) using the WAG model (Whelan and Goldman 2001) of amino acid 
substitution unless otherwise stated, after initial identification using mixed 
models. The Monte Carlo Markov Chain search was run over 1,000,000 
generations, unless otherwise stated in figure legends, and trees were 
sampled every 1,000 generations, with the first 25 % of trees thus gath-
ered discarded as ‘burn-in’. For the purposes of tree display, Contype was 
configured to Allcompat, but all other priors remained at default.

Gene sequences are firmly assigned homology to known genes where 
both maximum likelihood and Bayesian trees agree on the placement of 
these sequences within a clade of genes of known identity, and at least 
one phylogenetic reconstruction method shows node support with these 
genes of known homology with a bootstrap value greater than or equal to 
80, or posterior probability support greater than or equal to 0.9. The suffix 
‘-like’ is affixed to gene names where these criteria are not met.
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