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ABSTRACT  Implantation of the embryo into the uterus triggers the initiation of hemochorial 
placentation. The hemochorial placenta facilitates the acquisition of maternal resources required 
for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and 
fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal 
natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including 
remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we 
discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling 
and mechanisms responsible for their development and function. 
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Introduction

The embryo implants into the uterus to gain access to mater-
nal nutrients. Delivery of nutrients is facilitated by the placenta, 
which develops in association with the embryo/fetus. Trophoblast 
cells are the functional units of the placenta and key contributors 
to establishing the maternal-fetal interface. Hemochorial is the 
categorization of placentation displaying the closest connections 
between maternal and fetal tissues (Amoroso 1959; Mossman 
1987; Wooding and Burton 2008). Maternal blood directly bathes 
trophoblast, which requires restructuring of the uterine spiral 
arterial tree. Distal segments of the uterine spiral arterial tree 
are targeted and structurally modified to create conduits with 
altered vasoregulation properties, maximizing the flow of maternal 
resources to the placenta (Osol and Mandala 2009; Leonard et 
al., 2013; Osol and Moore 2014). This represents an orchestrated 
process involving the activities of specialized cell types derived 
from trophectoderm (outer layer of the blastocyst-stage embryo) 
and the modulatory influences of cells situated within the uterine 
stromal compartment (Pijnenborg et al., 2006; Wallace et al., 
2012). The extent of pregnancy-dependent uterine spiral artery 
remodeling differs among species (Amoroso 1959; Mossman 1987; 
Wooding and Burton 2008) and aberrations in uterine vascular 
modifications are associated with pregnancy-related diseases 
(Pijnenborg et al., 2006; Wallace et al., 2012). 
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In this review, we discuss the cellular participants control-
ling pregnancy-dependent uterine spiral artery remodeling and 
mechanisms responsible for their development and function.

Uterine spiral artery remodeling

Uterine spiral arteries are the conduits for delivering maternal 
nutrients to the fetus. These blood vessels undergo restructuring 
during the establishment of pregnancy (Pijnenborg et al., 2006; 
Osol and Mandala 2009; Harris 2010). The maternal uterine spiral 
arteries undergoes fundamental changes of their cellular (endo-
thelial and smooth muscle cell) and extracellular constituents, 
including hyperplasia, hypertrophy, apoptosis, dedifferentiation, 
migration, and extracellular matrix remodeling (Osol and Mandala 
2009; Harris 2011). We focus on two key architects of uterine 
spiral artery remodeling:  maternal natural killer (NK) cells and 
invasive trophoblast cells of extraembryonic origin (Smith et al., 
2009; Harris 2011; Wallace et al., 2012). Other cell types, such 
as maternal macrophages, also contribute to the remodeling 
process (Smith et al., 2009). There is a temporal dependence 
to NK cell and trophoblast contributions during pregnancy with 
NK cells arriving and acting first followed by invasive trophoblast 
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cells. Each cell type exhibits similarities and differences in their 
tasks. Both NK cells and trophoblast cells target the extracellular 
matrix and smooth muscle cells surrounding the spiral arteries 
leading to an alteration of vasoregulation and the facilitation of 
nutrient delivery (Wallace et al., 2012). Trophoblast cells go even 
further and supplant the endothelium of distal arterial segments. 
Subsequently, they assume a phenotype resembling the endothe-
lium termed pseudo-vascularization (Damsky and Fisher 1998; 
Rai and Cross 2014). The actions and effectiveness of these 
specialized cell populations are guided through signals impinging 
on the intrauterine environment. They react and adapt to appro-
priately direct formation of the maternal-fetal interface, balancing 
the needs of the mother and fetus. Aberrations in NK cell and/
or invasive trophoblast cell performance lead to disruptions in 
nutrient delivery to the placenta and subsequently to the embryo. 

Models for studying mechanisms controlling uterine 
spiral artery remodeling 

Control systems regulating any aspect of the vascular network 
can be complex and difficult to analyze. Uterine spiral artery re-
modeling is no exception. Human placentation exhibits extensive 
uterine spiral artery remodeling guided through the actions of NK 
cells and invasive trophoblast. Effective dissection of mechanisms 
controlling uterine spiral artery remodeling requires a combined 
in vivo and in vitro effort, which presents limitations for investi-
gations of the in vivo pregnant human intrauterine environment. 
There is an assortment of mammalian species adapted to labora-
tory research that possess hemochorial placentation and could 
potentially be used to model uterine spiral artery remodeling; 
however, all are not suitable. Although, hemochorial placentation 

exhibits elements of conservation across mammalian species, it 
also shows striking differences, including a dearth of trophoblast 
involvement in uterine spiral artery remodeling in some species, 
notably the mouse (Adamson et al., 2002; Ain et al., 2003). In 
contrast, placentation in other common laboratory species, includ-
ing the rat, hamster, and guinea pig possess deep trophoblast 
invasion not unlike that seen in human placentation (Pijnenborg 
and Vercruysse 2010). The rat is an effective model for examin-
ing regulatory roles of both NK cells and invasive trophoblast 
in uterine spiral artery remodeling (Soares et al., 2012; Fig. 1). 
The rat is especially attractive because excellent in vitro and in 
vivo approaches have been established for dissecting regulatory 
pathways controlling placentation. Trophoblast stem (TS) cells 
can be isolated from early embryos and readily propagated and 
manipulated for experimentation on invasive trophoblast lineage 
differentiation (Asanoma et al., 2011; Chakraborty et al., 2011; 
Kent et al., 2011; Konno et al., 2011). The size of the rat pres-
ents advantages for surgical preparations and repeated tissue 
sampling, and the rat can be genetically modified using newly 
developed genome editing strategies (Jacob et al., 2010; Rumi et 
al., 2014). These approaches coupled to complementary experi-
mentation with ex vivo human tissues obtained from normal and 
diseased placentation sites (Aplin 2006; Hunkapiller and Fisher 
2008; Hazan et al., 2010; Robson et al., 2012), a collection of 
immortalized human extravillous trophoblast cell lines (HTR-8/
SVneo, SGHPL-4/5, Swan 71; Graham et al., 1993; Whitley 
2006; Straszewski-Chavez et al., 2009), and BMP4-treated hu-
man embryonic or induced pluripotent stem cells (Xu et al., 2002; 
Ezashi et al., 2011; Amita et al., 2013; Li et al., 2013) provide a 
robust toolset for dissecting conserved mechanisms regulating 
the maternal-fetal interface. 

Fig. 1. Hemochorial placenta-
tion. Schematic diagram show-
ing homologous structures within 
human and rat hemochorial 
placentation sites. In the hu-
man, trophoblast cells destined 
for the maternal compartment 
are referred to as extravillous 
trophoblast cells, whereas in 
the rat these cells are referred 
to as invasive trophoblast cells. 
Invasive trophoblast cells are 
specialized into interstitial and 
endovascular subtypes. Col-
lectively, invasive trophoblast 
cells and natural killer cells direct 
uterine spiral artery restructuring. 
Adapted from Soares et al., 2012.
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Natural killer (NK) cells 

NK cells are constituents of the innate immune system pos-
sessing unique trafficking characteristics during pregnancy. Unlike 
other immune cell lineages, NK cells accumulate at the implanta-
tion site. These NK cells possess a unique phenotype and are 
distinct from circulating NK cells (Koopman et al., 2003; Cerdeira 
et al., 2013). They are embedded in the decidua and establish 
conspicuous relationships with uterine spiral arteries and invasive 
trophoblast cells, a process conserved among rodents and primates 
(Chakraborty et al., 2011; Zhang et al., 2011; Dambaeva et al., 
2012). NK cell deficient animal models have been used to demon-
strate the involvement of NK cells in uterine spiral artery remodel-
ing (Guimond et al., 1997; Barber and Pollard 2003; Chakraborty 
et al., 2011). This assessment has been supported by co-culture 
experiments involving NK cells and uterine spiral artery segments 
(Robson et al., 2012). NK cells contribute to pregnancy-dependent 
restructuring of the uterine spiral arteries, especially loss of tunica 
media integrity, which facilitates fetal nutrient delivery. Infiltration, 
differentiation, and maintenance of NK cells within the uterus dur-
ing the establishment of pregnancy are influenced by interleukin 
15, interleukin 11, Hoxa-10, transforming growth factor-b (TGFB), 
bone morphogenetic protein (BMP), and adrenomedullin signaling 
pathways (Barber and Pollard 2003; Ain et al., 2004; Rahman et 
al., 2006; Keskin et al., 2007; Li et al., 2013; Nagashima et al., 
2013). NK cell effects on uterine spiral arteries may be mediated 
by interferon g (Ashkar and Croy, 2001), nitric oxide (Hunt et al., 
1997), and an assortment of angiogenic growth factors and ex-
tracellular matrix modifying enzymes (Li et al., 2001; Wang et al., 
2000, 2003; Hanna et al., 2006; Lash et al., 2006b; Kopcow and 
Karumanchi 2007; Wallace et al., 2012). 

NK cells have also been implicated in the regulation of tropho-
blast cell invasion into the uterus and trophoblast cell interactions 
with uterine spiral arteries. A range of direct actions of NK cells on 
trophoblast cells has been postulated based primarily on in vitro 
analyses. The outcomes of these experiments are not entirely 
consistent and are likely influenced by the gestational age of the 
specimens and culture conditions. Some studies provide evidence 
for NK cell promotion of trophoblast migration and invasiveness 
(Hanna et al., 2006; Lash et al., 2010; Wallace et al., 2013), whereas 
other reports show that NK cells and their secretory products inhibit 
these vital functions (Ain et al., 2003; Hu et al., 2006; Lash et al., 
2006a; Eastabrook et al., 2008). Furthermore some researchers 
have advocated for the importance of physical interactions between 
NK cells and invasive trophoblast cells. Specific patterns of polymor-
phic trophoblast cell surface ligands consisting of histocompatibility 
antigen isoforms and their cognate polymorphic NK cell receptor 
isoforms can define successful versus compromised pregnancies 
(Hiby et al., 2004; Parham and Moffett 2013; Xiong et al., 2013; 
Kieckbusch et al., 2014). These NK cell receptor-trophoblast cell 
histocompatibility antigen interactions may be best developed in 
primates (Parham and Moffett 2013). Direct signaling between 
NK cells and trophoblast cells is intriguing; however, the indirect 
actions of NK cells on trophoblast development via their effects 
on the vasculature may be as compelling. 

Pivotal insights into the roles of NK cells in the regulation of 
hemochorial placentation were achieved using an in vivo rat model 
(Chakraborty et al., 2011). An immunodepletion strategy was 
employed to remove uterine NK cells during the establishment of 

the hemochorial placenta. The resulting phenotype confirmed a 
role for NK cells in the development and restructuring of uterine 
spiral arteries and unexpected functions in modulating the invasive 
trophoblast lineage. Surprisingly, trophoblast-directed uterine spiral 
artery remodeling was accelerated and much more pronounced in 
the absence of NK cells. The presence of NK cells also influenced 
the trophoblast pseudovascular phenotype. Based on these obser-
vations it was proposed that any actions of NK cells in promoting 
trophoblast endovascular invasion must be subtle and secondary 
to an overall restraining function (Chakraborty et al., 2011). Further-
more, the NK cell inhibitory action was viewed as indirect through 
NK cell regulation of uterine spiral artery development. Depletion 
of NK cells limited uterine mesometrial vascular development, 
lowering oxygen tension at the placentation site, and triggering 
trophoblast lineage decisions favoring differentiation of the invasive 
trophoblast lineage. Thus NK cell modulation of oxygen delivery 
is viewed as a key signal impacting trophoblast invasiveness 
and trophoblast-directed uterine spiral artery remodeling. These 
insights required an in vivo test using the rat, a species with deep 
trophoblast invasion.

Overview. NK cells have two key higher order functions regarding 
hemochorial placentation. They collectively act as a pacemaker, 
determining the timing of key developmental events and they 
fine-tune placental morphogenesis, defining the allocation of tro-
phoblast lineages and thus the structure/function features of the 
placenta. The operative NK cell functions are to delay and restrict 
the invasive trophoblast program. In performing these tasks they 
effectively protect the mother and prevent precocious and excessive 
trophoblast invasion and restructuring of the uterine spiral arteries. 

Trophoblast lineage development

Placentation is characterized by temporally and spatially relevant 
differentiation of trophoblast cells. The first cellular specification 
event during development occurs as totipotent cells of the em-
bryo are allocated to an outer position (trophectoderm) versus 
an inner position (inner cell mass; Cockburn and Rossant 2010). 
Trophectoderm is destined for expansion as a multi-potential 
trophoblast stem (TS) cell population and further differentiation 
into specialized trophoblast cell types (e.g. invasive trophoblast, 
syncytiotrophoblast, etc), whereas cells of the inner cell mass 
retain a broader developmental potential, including the ability to 
form embryonic and extraembryonic structures. Some regulatory 
factors controlling trophoblast lineage determination, expansion, 
and differentiation have been discerned (Roberts and Fisher 2011; 
Pfeffer and Pearton 2012). 

Extracellular signal control. Fibroblast growth factor (FGF)- and 
BMP-mediated signaling pathways are key regulators of the tro-
phoblast lineage. The FGF4-FGFR2 signaling pathway promotes 
self-renewal in rodent TS cells (Tanaka et al., 1998; Abell et al., 
2009; Murohashi et al., 2010; Asanoma et al., 2011). These cells can 
be maintained in a proliferative stem state or they can be induced 
to differentiate into specialized trophoblast lineages (Tanaka et 
al., 1998; Asanoma et al., 2011). A cocktail containing FGF4 and 
either TGFB or activin is sufficient to maintain TS cells ex vivo in 
a proliferative and undifferentiated state (Erlebacher et al., 2004; 
Kubaczka et al., 2014). An in vivo corollary to the TS cell has been 
identified in both rodent and human placentation sites (Rielland et 
al., 2008; Hemberger et al., 2010; Roberts and Fisher 2011; Pfef-



250    M.J. Soares et al.

fer and Pearton 2012). However, the presumptive human TS cell 
population has not been successfully propagated ex vivo. There 
have been some attempts at isolating and culturing TS/trophoblast 
progenitor cell populations (Genbacev et al., 2011; Takao et al., 
2011). These cells self renew and possess some capacity to differ-
entiate into specialized trophoblast cell types; however, they exhibit 
a very different gene expression profile than do rodent TS cells or 
the putative TS cells identified in the human placenta (Hemberger 
et al., 2010). BMP4 is a downstream target of the FGF4-FGFR2 
pathway in rodent TS cells (Murohashi et al., 2010) and is also an 
inducer of the trophoblast lineage when presented to pluripotent 
stem cells (Xu et al., 2002; Ezashi et al., 2012; Amita et al., 2013; 
Li et al., 2013). Following BMP4 treatment, pluripotent stem cells 
exhibit features of specialized differentiated trophoblast lineages. 
Presumably a multipotent TS cell population arises as the pluripotent 
stem cells commit to the trophoblast lineage; however, these cells 
have not yet been captured and propagated ex vivo. Expansion of 
such a cell population may require supplementation with special 
TS cell sustaining factors that are yet to be identified. The power 
of this pluripotent stem cell system for studying development of the 
trophoblast lineage is twofold: i) trophoblast development of the 
pluripotent stem cells is activated by BMP4, a known physiologi-
cal regulator of trophoblast lineage determination (Hayashi et al., 
2010; Amita et al., 2013; Home et al., 2013; Li et al., 2013) and 
ii) the model system is a window into the development of human 
trophoblast (Ezashi et al., 2012). 

Transcriptional/epigenetic control. During trophoblast lineage 
determination, key factors sustaining the totipotent state are 
repressed and/or downregulated, while other key factors sup-
porting the trophoblast lineage are activated and/or upregulated. 
These factors include transcription factors, histone modifiers, and 
chromatin organizers. POU5F1 (also called OCT4) is an essential 
transcription factor promoting totipotency and inhibiting tropho-
blast lineage development, whereas transcription factors such as 
TEAD4, CDX2, and EOMES are critical for development of the 
trophoblast lineage (Roberts and Fisher 2011; Pfeffer and Pearton 

(Adachi et al., 2013). These transcription factors and others, 
including GATA3, ELF5, and ETS2 contribute to development of 
the trophoblast lineage but their positions in the gene regulatory 
network are not yet precisely defined (Tremblay et al., 2001; Wen et 
al., 2007; Ng et al., 2008; Home et al., 2009, 2012; Keramari et al., 
2010; Kidder and Palmer 2010; Kuckenberg et al., 2010; Ralston 
et al., 2010; Adachi et al., 2013; Choi et al., 2013). The actions of 
these transcription factors are presumably mediated through the 
delivery of enzymatic machinery that post-translationally modifies 
histones creating chromatin states that are more favorable or less 
favorable for transcription. Modulation of histone post-translational 
modifications has been implicated in the regulation of TS cell 
stemness and differentiation (Yeap et al., 2009; Yuan et al., 2009; 
Alder et al., 2010; Rugg-Gunn et al., 2010; Santos et al., 2010; 
Abell et al., 2011; Chuong et al., 2013; Saha et al., 2013). Col-
lectively, each of these transcription factor and histone modifier 
activities is coordinated by a higher order of regulation controlled 
by chromatin organizers. SATB1 and SATB2 are prototypical 
genome organizers and have been implicated in controlling the 
TS cell stem state (Asanoma et al., 2012). Trophoblast lineage 
specific differentiation requires the downregulation of factors that 
maintain the TS cell stem state and activation of regulatory factors 
that promote lineage-specific differentiation. For example, CDX2, 
EOMES, SOX2, ID1/2, ESRRB, ELF5, and SATB1/2 sustain the 
TS cell stem state and are downregulated during differentiation 
(Tanaka et al., 1998; Janatpour et al., 2000; Ralston et al., 2010; 
Asanoma et al., 2011; Adachi et al., 2013), whereas transcription 
factors such as GCM1, GATA2, ASCL2, FOSL1, JUNB, BHLHE40, 
and OVOL2 are activated and promote differentiation into mature 
sub-lineages (Tanaka et al., 1998; Janatpour et al., 1999; Schorpp-
Kistner et al., 1999; Schreiber et al., 2000; Hughes et al., 2004; 
Ray et al., 2009; Asanoma et al., 2011; Kent et al., 2011; Ueno et 
al., 2013; Renaud et al., 2014; Zhu et al., 2014). A schematic of 
the progression from a totipotent stem cell to a multipotent TS cell 
to a specialized differentiated trophoblast cell is shown in Fig. 2. In 
summary, transcription factors, histone modifiers, and chromatin 

Fig. 2. Overview of the developmental 
progression from a totipotent stem 
cell to a multipotent trophoblast stem 
(TS) cell to a specialized differentiated 
trophoblast cell. Each step along the 
developmental progression is controlled 
by positive and negative modulatory fac-
tors. These factors can be characterized 
as transcription factors, histone modi-
fiers, and chromatin organizers (lists are 
provided in boxes below each cell type). 
See text for additional information.

2012). Ectopic expression of any of 
these three transcription factors can 
convert pluripotent mouse embryonic 
stem cells into TS cells (Niwa et al., 
2005; Tolkunova et al., 2006; Nishioka 
et al., 2009). TEAD4 is an upstream 
regulator of CDX2 and CDX2 is 
an upstream regulator of EOMES. 
SOX2, ESRRB, and TCFAP2C are 
essential for TS cell self-renewal 
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organizers cooperate to control totipotent stem cells, multipotent 
TS cells, and specialized trophoblast cells (Hemberger 2010; 
Maltepe et al., 2010; Wang et al., 2010; Rugg-Gunn 2012; Latos 
and Hemberger 2014; Paul and Knott 2014). 

Invasive trophoblast program

The development of trophoblast cells is multi-directional. 
Trophoblast can specialize into cells with transport, hormone 
secreting, and invasive features. Cells exhibiting invasive capabili-
ties are termed invasive trophoblast or in the case of the human 
as extravillous trophoblast. Invasive trophoblast cells possess 
gene expression profiles distinguishing themselves from other 
trophoblast cell lineages (Bilban et al., 2010; Apps et al., 2011). 
Two phenotypically distinct types of invasive trophoblast can be 
identified: i) cells moving between uterine stromal cells termed 
interstitial invasive trophoblast cells and ii) cells moving within 
uterine spiral arteries termed endovascular invasive trophoblast 
cells (Pijnenborg et al., 2006). In rodents, interstitial invasive 
trophoblast cells are characterized by their accumulation of gly-
cogen (Teesalu et al., 1998; Vercruysse et al., 2006). Interstitial 
invasion is severely restricted in some rat strains, including the 
Brown Norway rat, which may be due to uterine progesterone 
resistance and attenuated decidua development (Konno et al., 
2007, 2010, 2011). Both interstitial and endovascular invasive 
trophoblast cells contribute to uterine spiral artery modifications; 
however, based on their positioning they each have some unique 
targets and modes of action. Interstitial invasive trophoblast cells 
via their distribution throughout the uterine stroma likely possess a 
broad set of actions supportive of the maternal-fetal interface. The 
activities of endovascular invasive trophoblast cells are focused 
on the vasculature. They breach the spiral artery wall and propel 
themselves within the lumen of the vessel, where they replace 
the endothelium and can mimic components of an endothelial cell 
phenotype (Damsky and Fisher 1998; Rai and Cross 2014). There 
are species differences in this process and evidence that tropho-
blast replacement of the endothelium is incomplete, transitory, 
and that endothelial cells can repopulate the lining of the vessel 
wall (Pijnenborg et al., 2006; Ockleford 2010). Migratory features 
of invasive trophoblast are associated with their expression of 
proteins facilitating movement, including those proteins capable 
of modifying extracellular matrices. The mode of movement of 
interstitial versus endovascular trophoblast differs. In interstitial 
invasion – trophoblast cells dissociate and display elements of an 
epithelial to mesenchymal transformation as they penetrate the 
decidual stroma (Vicovac and Aplin 1996), whereas in endovascular 
invasion – cells maintain connectivity and exhibit an epithelial to 
endothelial-like transformation (Damsky and Fisher 1998). Aspects 
of the invasive trophoblast cell phenotype can be modeled in vitro; 
however, distinctions between the types of invasive trophoblast 
cells are more difficult to discern and are generally associated with 
acquisition of pseudovascular characteristics, which defines the 
endovascular invasive trophoblast cell population. 

Regulation of invasive trophoblast differentiation

Considerable attention has been directed to elucidating path-
ways controlling the invasive trophoblast lineage. In this section, 
our discussion will be restricted to examples of conserved regula-

tion demonstrated in vitro and in vivo using animal model systems 
and if available complemented with experimental findings showing 
relevance to human implantation/placentation.

Phosphatidylinositol 3-kinase/AKT/FOSL1
Several years ago, a linkage between Src family nonreceptor 

tyrosine kinases and phosphatidylinositol 3-kinase (PI3K) was 
established in differentiating rat TS cells (Kamei et al., 1997, 
2002). PI3K is an intracellular enzyme responsible for the phos-
phorylation of phosphatidylinositol, which serves as a downstream 
activator of a signaling cascade controlling cell proliferation, dif-
ferentiation, motility, metabolism, and survival (Cantley 2002). The 
LYN nonreceptor tyrosine kinase associates with PI3K and both 
proteins exhibit increases in enzymatic activity during trophoblast 
differentiation (Kamei et al., 1997, 2002; Kent et al., 2010). Small 
molecule inhibition of PI3K inhibits both endocrine and invasive 
activities of differentiating rat TS cells (Kamei et al., 2002; Kent et 
al., 2010). PI3K is an upstream regulator of the serine/threonine 
kinase, AKT. Inhibition of AKT also interferes with activation of the 
invasive trophoblast cell phenotype (Kent et al., 2011). AKT consists 
of three isoforms (AKT1, AKT2, AKT3). Each isoform is expressed 
in differentiating trophoblast cells and contributes to regulating the 
invasive trophoblast lineage (Kent et al., 2011). Both shared and 
isoform-specific actions characterize AKT signaling in differentiating 
trophoblast leading to complexities not yet fully appreciated (Kent 
et al., 2011; Haslinger et al., 2013). 

There are numerous potential upstream activators of the PI3K/
AKT signaling cascade in trophoblast cells, consisting of growth 
factors, cytokines, and extracellular matrix constituents (Polheimer 
and Knöfler 2005; Knöfler 2010). EGF, HGF, IGF2, chorionic go-
nadotropin, and wingless (WNT) family ligands have been shown 
to stimulate invasive properties of human trophoblast or trophoblast 
cell lines, at least in part, through activation of the PI3K/AKT signal-
ing pathway (Cartwright et al., 2002; Qiu et al., 2004; Prast et al., 
2008; Sonderegger et al., 2010; Pollheimer et al., 2011; Haslinger 
et al., 2013). However, demonstration of the involvement of any of 
these activators of PI3K/AKT in the regulation of in vivo intrauterine 
trophoblast invasion is lacking. 

One intriguing downstream mediator of PI3K/AKT regulation of 
trophoblast invasiveness is the activator protein 1 (AP1) transcrip-
tion factor component, FOSL1. PI3K/AKT signaling stabilizes the 
nuclear localization of FOSL1 (Kent et al., 2011). Trophoblast gene 
expression and invasion are regulated by FOSL1. In vitro knockdown 
of FOSL1 using specific short hairpin RNAs (shRNAs) disrupts the 
expression of key genes encoding proteins associated with dissolu-
tion of extracellular matrices, cell migration, and vascular remodeling 
and inhibits trophoblast cell migration through extracellular matrices 
(Kent et al., 2011). Furthermore, in vivo knockdown of FOSL1 in the 
rat using trophoblast-specific lentiviral delivery of specific FOSL1 
shRNAs significantly reduced the depth of trophoblast invasion 
into the uterus (Kent et al., 2011). Such an action of FOSL1 was 
not evident from mouse mutagenesis experiments (Schreiber et 
al., 2000). FOSL1 was shown to regulate mouse placentation but 
a clue to its actions on the invasive trophoblast lineage was not 
forthcoming. These results do not diminish FOSL1 as a regulator 
of the invasive trophoblast phenotype but instead highlight the 
limitations of using the mouse as a model system for investigating 
the invasive trophoblast lineage. In fact, the pro-invasive action of 
FOSL1 is conserved in human trophoblast (Renaud et al., 2014). 
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FOSL1 is localized to extravillous trophoblast at the leading edge 
of trophoblast columns penetrating the uterine decidua. Interest-
ingly, two other FOS family transcription factors, FOS and FOSB, 
restrain the actions of FOSL1 and instead are prominently expressed 
in proliferating trophoblast cells embedded within the core of the 
trophoblast columns (Renaud et al., 2014). 

Collectively, the data suggest the participation of a conserved 
PI3K/AKT/FOSL1 pathway in the regulation of invasive trophoblast. 
Upstream activation of PI3K/AKT signaling and downstream events, 
including FOSL1 partners and specific transcriptional targets, me-
diating invasive trophoblast differentiation remain to be elucidated.

Notch
The Notch signaling pathway is a highly conserved cell-cell 

communication system directing embryonic development. Notch 
signaling components include a family of receptors (NOTCH1-4) 
and membrane-associated ligands of the DLL and JAG families 
(Hori et al., 2013). Signal transduction is activated when a ligand-
expressing cell apposes a NOTCH-expressing cell impacting 
potentially a broad spectrum of cellular processes (e.g. survival, 
proliferation, differentiation, motility, and vascular specification). 
Mouse and human trophoblast cells express components of the 
Notch signaling pathway (Nakayama et al., 1997; Hunkapiller et al., 
2011; Haider et al., 2014). Selective genetic inactivation of Notch2 
in mouse trophoblast lineages results in disruptions in placentation, 
including failed trophoblast cell invasion of uterine spiral arteries 
and impaired perfusion of the placenta (Hunkapiller et al., 2011). In 
vitro experimentation has demonstrated the importance of Notch 
signaling in human trophoblast cell biology but led to differing con-
clusions. In one report, disruption of Notch signaling with a small 
molecule inhibitor interfered with trophoblast invasive properties 
and impaired acquisition of a pseudo-vascular phenotype directly 
supporting the Notch2 mutant mouse phenotype (Hunkapiller et al., 
2011), whereas another report highlighted the importance of Notch 
signaling in maintaining trophoblast proliferation and its antagonism 
of trophoblast motility and invasive properties (Haider et al., 2014). 
These in vitro experimental outcomes point to the importance of 
Notch signaling in trophoblast cells and also its dynamic nature. 
Multiple NOTCH receptors and ligands expressed by several pla-
centation site-associated cell types each possessing gestational 
stage-specific expression profiles creates complexities for planning 
in vitro experiments designed to recapitulate aspects of in vivo 
trophoblast cell development.

Oxygen
Cells require oxygen and possess intricate and highly conserved 

mechanisms for adapting to oxygen deprivation (Semenza 2010). 
Central to cellular adaptations to low oxygen is a transcriptional 
complex referred to as hypoxia-inducible factor (HIF). HIF is com-
posed of an oxygen labile alpha subunit (HIF1A or HIF2A) and a 
constitutive partner referred to as HIF1 beta (HIF1B, also called aryl 
hydrocarbon nuclear translocator, ARNT). The HIF alpha subunit is 
vulnerable to degradation at oxygen replete conditions. In contrast, 
at conditions of oxygen scarcity the HIF transcriptional complex is 
stabilized and activates target genes encoding proteins essential 
for cellular adaptation to low oxygen. Definitions of a couple of 
terms associated with oxygen homeostasis are required before 
we proceed. Normoxia represents a condition of “normal” oxygen 
availability. Hypoxia is a condition associated with low oxygen ten-

sion, especially one that evokes the HIF-mediated cellular adaptive 
response. Importantly, a specific oxygen tension cannot be used 
to define hypoxia or normoxia. These are relative terms and are 
absolutely dependent upon cell type and physiological or pathologi-
cal setting. It should be appreciated that under physiological condi-
tions hypoxia is a transient homeostatic process corrected by an 
assortment of cellular and systemic adaptations. Chronic hypoxia 
is a pathological event associated with failures in adaptation. These 
fundamental principles need to be considered in designing experi-
ments to investigate the impact of oxygen tension on trophoblast 
cell biology. Unfortunately, attempts to model hypoxia in vitro have 
been fraught with numerous inaccurate assumptions and mislead-
ing interpretations (see Tuuli et al., 2011 for additional discussion). 

Oxygen tensions at the placentation site change during the 
course of gestation (Zamudio, 2003). Establishment of the hemo-
chorial interface is the pivotal event determining trophoblast cell 
oxygen exposure. Oxygen increases once trophoblast-vascular 
connectivity is established. It has also become evident that oxygen 
is an orchestrator of placental morphogenesis (Dunwoodie 2009). 
Such insight has been gained from mouse mutagenesis of several 
key regulators of oxygen homeostasis, including HIF1A, HIF2A, 
HIF1B, EGLN1, VHL, and CITED2 (Gnarra et al., 1997; Kozak et 
al., 1997; Adelman et al., 2000; Cowden Dahl et al., 2005a; Maltepe 
et al., 2005; Takeda et al., 2006; Withington et al., 2006). Additional 
understanding has been achieved from using oxygen tension as an 
in vivo experimental tool to investigate placentation site-associated 
adaptations in the rat (Rosario et al., 2008). Exposure of pregnant 
rats to 10-11% oxygen from the onset of embryo implantation 
until midgestation results in profound effects on the maternal-fetal 
interface (Ho-Chen et al., 2007; Rosario et al., 2008). The hypoxic 
conditions drive increases in uterine mesometrial vascularity, uterine 
spiral arterial remodeling, and dramatic increases in the depth of 
intrauterine endovascular invasive trophoblast cell penetration (Fig. 
3). This environmental challenge accelerated and exaggerated 
changes at the placentation site that would not normally occur until 
the latter stages of pregnancy. Activation of the invasive trophoblast 
lineage required exposure to hypoxia between gestation days 8.5 
and 9.5. This critical window of in vivo sensitivity to oxygen cor-
relates with the initiation of essential trophoblast cell differentiation 
leading to formation of the bi-compartmental rat placenta. Hypoxia 
results in preferential expansion of the junctional zone and its resi-
dent invasive trophoblast cell population, which is situated at the 
maternal interface, and a proportional reduction in the size of the 
labyrinth zone (Rosario et al., 2008; Chakraborty et al., 2011). This 
is a conserved adaptive response. In vivo hypoxia activation of the 
invasive trophoblast lineage has also been observed in primates 
(Zhou et al., 1993; Kadyrov et al., 2003). Alternatively, others have 
used in vivo chronic hypoxia to overwhelm adaptive responses and 
create placental injury (Tomlinson et al., 2010; Lai et al., 2011). Thus, 
oxygen availability can serve as context-dependent instructive or 
pathological signals affecting placentation. In general, trophoblast 
cells migrate toward higher oxygen tensions (Jauniaux et al., 2001).

Oxygen tension is also a potent regulator of in vitro trophoblast 
cell behavior, including development of the invasive trophoblast 
lineage. Fisher and colleagues first showed that low oxygen tension 
(2 percent) promoted first trimester human trophoblast proliferation, 
whereas atmospheric oxygen (21 percent at sea level) stimulated 
differentiation (Genbacev et al., 1996, 1997). Since then an as-
sortment of observations have been made on trophoblast cell 
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responses to low oxygen, including seemingly contradictory find-
ings. It is now apparent that oxygen concentration and duration of 
exposure can have fundamentally different effects on trophoblast 
cell behavior (Tuuli et al., 2010; Zhou et al., 2011). Additionally, 
the origin and characteristics of the trophoblast cell (e.g. primary 
trophoblast, gestational age, immortalized trophoblast cell line, 
trophoblast cancer cell) influences its responses to oxygen avail-
ability. Rodent TS cells have proven to be a robust in vitro model 
system for studying trophoblast cell adaptations to low oxygen 
(Cowden Dahl et al., 2005a,b; Chakraborty et al., 2011; Zhou et 
al., 2011). Gradients in oxygen tension can differentially stimulate 
trophoblast cell proliferation or trophoblast cell differentiation (Zhou 
et al., 2011). Very low oxygen concentrations (0.5-1.5%) activate 
development of the invasive trophoblast lineage (Cowden Dahl et 
al., 2005b; Chakraborty et al., 2011). This differentiation event is 
associated with decreased cell-cell adhesion, upregulation of ma-
trix metalloproteinases, and increased cellular movement through 
extracellular matrices; and is dependent upon activation of the HIF 
signaling pathway. The targets downstream of HIF transcriptional 
regulation in hypoxia-exposed TS cells have not been identified but 
should include genes controlling key stages in the differentiation of 
the invasive trophoblast lineage and also the activation of homeo-
static regulatory processes designed to promote trophoblast cell 
survival and function. Activation of endothelial nitric oxide synthase 
and production of nitric oxide is an adaptation used in the mouse 
placenta to prevent local hypoxia (Schaffer et al., 2006). There is 
also evidence that non-canonical HIF signaling contributes to the 
regulation of trophoblast differentiation (Choi et al., 2013) and that 
hypoxia can affect trophoblast differentiation independent of HIF 
(Tache et al., 2013). Links between hypoxia and epigenetic regula-
tion, including histone acetylation and DNA methylation, have been 
investigated in trophoblast cells (Maltepe et al., 2005; Yuen et al., 
2013). Interestingly, in human trophoblast cells hypoxia-sensitive 
DNA methylation regions are enriched for AP1 binding motifs (Yuen 
et al., 2013), thus potentially connecting AP1, including FOSL1, 
and hypoxia/HIF regulatory pathways in trophoblast cell adaptive 
mechanisms. 

In summary, TS cells present during the formative stages of 

placentation are characterized by their plasticity. They can differ-
entiate into trophoblast cells targeted to the uterine vasculature or 
alternatively into trophoblast cells dedicated to nutrient transport, 
effectively establishing the functional limits for placental performance 
and the milieu for fetal growth and development. Oxygen delivery 
to the TS cell niche contributes to decision-making governing tro-
phoblast cell differentiation. Low oxygen activates HIF signaling 
and favors differentiation directed toward the invasive trophoblast 
cell lineage. Thus factors controlling oxygen delivery to the TS cell 
niche, especially NK cells (see above), have a major influence on 
the organization of the maternal-fetal interface. 

Disease processes associated with disruptions in uterine 
spiral artery remodeling

Failures in trophoblast-directed uterine spiral artery remodeling 
have been reported in diseased human pregnancies diagnosed with 
preeclampsia, Hemolysis, Elevated Liver enzymes, Low Platelets 
(HELLP) syndrome, and intrauterine growth restriction (Kaufmann 
et al., 2003; Pijnenborg et al., 2006). These pathologies have been 
a major driver of placental research. There are exquisite descriptions 
of the phenomenology surrounding the diseases but much less 
insight into their actual etiologies. The lack of progress is certainly 
associated with the multifactorial nature of any pregnancy related 
event. The embryo, its ability to give rise to multiple trophoblast 
lineages, and the host maternal environment in which the embryo 
develops each contribute to the manifestation of the disease. Two 
routes of inquiry are apparent: i) identify potential sensitive junctures 
in normal developmental processes, which may impact susceptibil-
ity to disease; ii) directly study the disease and determine how the 
disruption of candidate regulators leads to disease. Strategies for 
studying trophoblast-directed uterine spiral artery remodeling have 
been provided above. Investigations on mechanisms underlying 
pregnancy-related diseases are inherently confounded because 
key events associated with the ontogeny of the disease pre-date 
diagnosis. Diseased tissue specimens are affected by a failed 
placentation (e.g. hypoxia, inflammation) and thus compromise 
acquisition of mechanistic insights into etiology from any phenotypic 

Fig. 3. Maternal hypoxia stimulates trophoblast invasion into uterine spiral arteries of the rat. 
Wild-type female rats were mated to homozygous chbA-enhanced green fluorescent protein (EGFP) 
transgenic male rats and exposed to an atmospheric oxygen tension (21 percent at sea level (A) or 
hypoxia (10-11%; gestation day 6.5 to day 13.5 (B). Placentation sites were examined on gestation day 
13.5 and uterine mesometrial compartments inspected for EGFP positive cells. Note that maternal hy-
poxia stimulated the invasion of extraembryonic-derived EGFP positive cells deep into maternal uterine 
spiral arteries, representing a potentially effective placental-associated adaptation to an environmental 
challenge. Scale bar, 0.5 mm. Adapted from Rosario et al., 2008.

analysis. Genetic analyses have offered 
an alternative approach (van Dijk and 
Oudejans 2013).

Several genetic screens have been 
performed to establish linkages between 
pregnancy-related diseases associated 
with impairments in trophoblast cell inva-
sion and uterine spiral artery remodeling, 
including preeclampsia and the HELLP 
syndrome (van Dijk and Oudejans 2013). 
Among these efforts, a couple of genes 
have been pursued and complemented 
with functional analyses leading to the 
identification of previously unappreciated 
regulatory pathways.

Stox1
A polymorphism at the STOX1 locus 

was identified in genetic screens of 
families with severe preeclampsia and 
intrauterine growth restriction (van Dijk et 

BA
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al., 2005). The STOX1 protein possesses a winged helix domain 
present in FOX family transcription factors, suggesting that STOX1 
may contribute to the regulation of gene expression. The polymor-
phism affects the amino acid structure of the STOX1 DNA binding 
domain (Y153H). The H isoform is associated with the diseased 
state.  It is expressed in extravillous trophoblast and specifically 
targets and promotes transcription of the CTNNA3 gene.  CTNNA3 
encodes a cell-cell adhesion molecule, a-T-catenin, and restrains 
the invasive properties of trophoblast cells (van Dijk et al., 2010). 
These observations are further supported by experiments using 
a transgenic mouse model. Pregnant female mice possessing 
conceptuses overexpressing STOX1 exhibit preeclampsia-like 
symptoms (Doridot et al., 2013). Although placentation was al-
tered in the STOX1 overexpressing conceptuses, a description 
of invasive trophoblast cells and uterine spiral artery remodeling 
was not reported. Most interestingly, nuclear localization of the 
STOX1 protein is regulated by AKT (van Dijk et al., 2010). AKT-
mediated STOX1 phosphorylation prevents entry of STOX1 into 
the nucleus, consistent with the pro-invasive role of AKT signaling 

methylates several circulating hormones, including catechol estro-
gens, and is responsible for the generation of 2-methoxyestradiol 
(2-ME). 2-ME synergizes with hypoxia to promote trophoblast cell 
invasive properties (Lee et al., 2010). Preeclamptic patients exhibit 
decreased placental COMT activities and disruption of the Comt 
gene in the mouse is associated with a preeclampsia-like pheno-
type in pregnant mice (Kanasaki et al., 2008). Polymorphisms in 
the COMT gene affecting COMT expression or COMT enzymatic 
activity may contribute to the development of preeclampsia (She-
noy et al., 2010). In contrast, the CORIN-associated preeclamptic 
phenotype reflects disruptions in the maternal environment. CO-
RIN is expressed in the uterus and acts to generate biologically 
active atrial natriuretic peptide (ANP). ANP stimulates in vitro 
trophoblast cell invasion through extracellular matrices and either 
CORIN or ANP deficiencies in the mouse result in deficits in both 
trophoblast invasion and uterine spiral artery remodeling and are 
characterized by preeclamptic-like symptoms (Cui et al., 2012). 
Uteri from preeclamptic patients express less CORIN and some 
preeclamptic patients possess polymorphisms negatively affecting 

Fig. 4. Trophoblast stem (TS) cell plasticity and placental disease. Environmental challenges, including 
nutrient availability, at the maternal-fetal interface direct the decision-making of TS cells. TS cells possess 
the capacity to self-renew, die, become quiescent, or differentiate into specialized trophoblast lineages. A 
successful pregnancy is associated with robust and gestation stage-appropriate homeostatic responses to 
environmental challenges resulting in effective organization of the placentation site, maternal adaptations 
and normal progression of fetal development and healthy offspring. In contrast, we propose that placental 
disease is associated with a TS cell that lacks plasticity and the ability to effectively adapt to environmental 
challenges, which activates a positive feedback loop sustaining and potentially intensifying the environmental 
challenge, resulting in failures in placentation and maternal, fetal, and postnatal compromise.

in trophoblast cells. 

HELLP long non-coding RNA
A  genetic screen of familial HELLP 

syndrome led to the identification 
of mutations in a gene encoding a 
long non-coding RNA specifically 
expressed in extravillous trophoblast 
(van Dijk et al., 2012). Initial evidence 
indicates that the HELLP long non-
coding RNA promotes proliferation 
and inhibits differentiation into the 
extravillous invasive trophoblast 
phenotype. This finding opens an 
avenue for future exploration into a 
potentially novel mechanism control-
ling trophoblast differentiation.

Other candidate genes
A candidate gene approach has 

also been used to elucidate mecha-
nisms associated with disruptions 
in trophoblast cell invasion and 
preeclampsia. Two examples will 
be discussed. Experimental evi-
dence has accumulated suggesting 
that catechol-O-methyltransferase 
(COMT) and corin serine peptidase 
(CORIN) are modulators of tropho-
blast cell invasion and disrupted in 
preeclampsia (Kanasaki et al., 2008; 
Lee et al., 2010; Cui et al., 2012). 
Their potential involvement in the 
etiology of the pregnancy-associated 
disease surfaced from examination 
of tissues from preeclamptic patients 
and has been bolstered through 
phenotypic investigations of geneti-
cally modified rodent models. COMT 
is expressed in the placenta and 
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CORIN enzymatic activity (Cui et al., 2012), further supporting a 
role for CORIN in the etiology of preeclampsia. 

Overview
Diseases affecting trophoblast invasion and uterine spiral artery 

remodeling are examples of classic positive feedback paradigms. 
Early failures in the process of uterine spiral artery remodeling lead 
to hypoxia and inflammation that perpetuate and exacerbate the 
deficits (Renaud et al., 2011; Cotechini et al., 2014) and are not 
remedied until the pregnancy is terminated and the protagonist 
placenta removed. It is expected that clarity will be achieved as 
we gain insights into both the physiology and pathophysiology of 
uterine spiral artery remodeling. 

Final thoughts on adaptations at the maternal-fetal 
interface

Plasticity and the ability to adapt to environmental challenges 
are favorable attributes for pregnancy success (see Fig. 4). In-
trinsic to any adaptation affecting pregnancy is the control of the 
decision-making process directing multi-lineage differentiation 
of trophoblast stem cell populations. These stem cells can self-
renew, die, become quiescent, or differentiate and assume one 
of several specialized functions within the placenta. This flexibility 
is gestation-stage dependent with greater capacity for adaptation 
during early versus later phases of pregnancy and it ensures that 
the placentation site is optimally organized to facilitate fetal growth 
and development. Failures in early organizational decisions yield 
rigidity and inability to effectively adapt to later challenges. The 
entry points for understanding placentation site-associated plas-
ticity are homeostatic mechanisms that all cells utilize to optimize 
their survival when exposed to environmental stressors. Some 
elements of this fundamental adaptive process can be modeled 
in a dish and are most meaningful when complemented with 
investigations using animal models (Bonney 2013; Clark 2014). 
Logically, placental disease results when adaptive responses at 
the implantation/placentation site fail or are inappropriate, thus 
sustaining or intensifying the environmental challenge and leading 
to maternal, fetal, and postnatal compromise. Determining whether 
a placenta is destined for success or failure, especially considering 
the importance of the placenta to the growth and development of 
the fetus and its future postnatal health, is inherently complicated 
but fundamental to improving human health. 
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