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Adaptive walks in a gene network model of morphogenesis:
insights into the Cambrian explosion
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ABSTRACT The emergence of complex patterns of organization close to the Cambrian boundary
is known to have happened over a (geologically) short period of time. It involved the rapid
diversification of body plans and stands as one of the major transitions in evolution. How it took
placeis acontroversialissue. Here we explore this problem by considering a simple model of pattern
formation in multicellular organisms. By modeling gene network-based morphogenesis and its
evolution through adaptive walks, we explore the question of how combinatorial explosions might
have been actually involved in the Cambrian event. Here we show that a small amount of genetic
complexity including both gene regulation and cell-cell signaling allows one to generate an
extraordinary repertoire of stable spatial patterns of gene expression compatible with observed
anteroposterior patterns in early development of metazoans. The consequences for the under-
standing of the tempo and mode of the Cambrian event are outlined.
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Introduction

Morphological complexity in metazoa experienced an
extraordinary leap close to the Cambrian boundary (around 550
Myrs ago). Such event has been labeled the Cambrian explosion.
When this radiation began and how rapidly it unfolded, is still the
subject of active research (Morris, 1998; Raff, 1994; Valentine
eral, 1999; Solé et al, 2000). The early origins of the last com-
mon ancestor and the structure of its bodyplan are controversial
issues (Erwin and Davidson, 2002). The Cambrian event estab-
lished essentially all the major animal body plans and hence all the
major phyla which would exist thereafter. A body plan can be
described anatomically but also in terms of the spatiotemporal
pattern of expression of some key genes (Arthur, 1997). In this
context, the origins of evolutionary novelty emerges as an integra-
tive field involving gene regulation, development and paleobiology
(Arthur, 2002; Carroll, 2001). As Shubin and Marshall pointed out,
untangling the web of ecological, developmental and genetic
interactions is a difficult task and a key question is which changes
occur first (Shubin and Marshall, 2000).

A possible interpretation of the uniqueness, tempo and mode of
the Cambrian event in terms of generic features of complex
evolving systems was suggested by Kauffman in terms of adaptive
walks on rugged fitness landscapes (Kauffman, 1993, 1989). In a

nutshell, the idea is that, given the fundamental constraints im-
posed by early developmental dynamics, early exploration of the
universe of possible body plans took place quickly (once some
underlying requirements were met) but then slowed down as the
repertoire of possible bodyplans was filled out
(Kauffman, 1989; Raff, 1994). Starting from some initial condition
where low-fit multicellular organisms were present, a rapid explo-
ration of the landscape was allowed to occur. This initial exploration
led to anincrease of diversity ofimproved alternative morphologies
thereby establishing phyla. As the rate of finding fitter mutants that
alter early developmental processes (which define body plans)
slowed down, lower taxonomic groups became established.

The argument is completed by the assumption that mutants
affecting early development have more profound effects than
those affecting late development. In this scenario, by the Permian
extinction (200 Myr later), when an estimated 95% of species (82%
of genera, see (Erwin, 1998)) went extinct, early developmental
pathways would be expected to have become largely frozen in after
the Cambrian event and no new phyla would be reachable. Fitter
variants altering basic body plans would be very hard to find but not
variants affecting late development. This would allow the radiation
of new families and lower taxa. Fitness landscapes, firstintroduced
by Wright in 1932, allow to describe changes in the fitness of a
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given species through time in a well-defined fashion
(Palmer, 1991; Kauffman, 1993; Rowe, 1994; Stadler, 2002).Inan
idealized situation, we can imagine the landscape as a surface.
Here the tops and bottoms of the landscape would indentify good
and bad combinations of traits, respectively. This picture allows
one to visualize the evolution of species as a hill climbing on the
fitness surface.

A more precise definition is provided by describing each
individual (or species) is defined as a set of /V/binary variables
S, €{0, 1} defining a set of characteristic traits (Kauffman and
Levin, 1987; Kauffman, 1993). The total number of combina-
tions is 2V and each occupies a node of a Athypercube I, In
Fig. 1 we show an example of this fitness landscape for /= 3.
Each string has a well-defined fitness value, which can be
represented by means of a A-dimensional function @=
©(S,,...,S,). If the number of epistatic interactions Kis zero, i. e.
if different traits do not influence each other, then a smooth
landscape is obtained, whith a single peak. But if different traits
interact, then the landscape becomes rugged and multiple local
fitness peaks are allowed to occur. The simplest evolution on a
fitness cube occurs by means single, one-bit steps. In other
words, a given species can perform a random adaptive walk
from a given node towards one of its A/nearest neighbors if this
leads to an increase in fithess (alternatively, a neutral change
can also occur and thus random drift is also allowed). A direct
consequence of this assumption is that once a local peak is
reached, no further changes are allowed.

There is a universal feature of adaptation on statistically
correlated landscapes (Kauffman and Levin, 1987) which can
be appropriately used to test these ideas. This can be formu-
lated as follows: if Sis the cumulative number of assumed
improvements (new body plans) originated and 7is the cumu-
lative number of tries, then S will grow with 7in a logarithmic
fashion. Graphically, this means that S grows rapidly at the
beginning and then slows down. The cumulative number of tries
can be approximated by the cumulative number of lower-level
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Fig. 1. Asimple fitness landscape with N =3 traits and K = 2 epistatic interactions.
Here the three traits involved interact with the other two (A). The possible states of the
system are given by the vertices of the fitness cube (this time a N = 3-dimensional cube
I',). The resulting average fitness, =3 ¢/N is obtained from a fitness table (B) where
the contribution of each trait @ (under the presence of the other two) is generated as
arandom number between zero and one. The table provides the local maxima. Adaptive
walks (indicated as arrows) take place to nearest sites with higher fitness. In this

example, adaptive walks end in two possible local peaks (C).
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entities (e. g. genera) viewed as successive experiments in the
generation of higher-level entities. The analysis of the cumula-
tive increase of phylum originations against cumulative genera
seems to confirm this prediction (Eble, 1998).

A further step in exploring the possible scenarios for an
explosion of patterns in the evolution of development should
consider the developmental program in an explicit way. One
important factor not addressed by previous theoretical studies
deals with the spectrum of possible spatial patterns of gene
expression that can be generated from a given number of
genes. This is a relevant question since combinatorial explo-
sions can occur once complexity thresholds (in number of
genes or their interactions) are reached. In previous studies, it
has been shown that some particular types of combinations of
gene-gene interactions involving cell-cell communication allow
to easily generate a number of spatial patterns including stripes,
gradients or spots (Salazar ef a/,, 2000, 2001; Solé et a/,, 2002).
These studies were performed on randomly wired networks and
revealed a large fraction of spatial patterns that could be
generated and their nature (Solé ef a/, 2002). One question
immediately emerges: what are the minimal complexity require-
ments in terms of number of pattern-forming genes- in order to
reach a high diversity of phenotypes?

One possible approach to the problem is to consider an
artificial evolution model where real organisms and their devel-
opment are replaced by digital organisms (Wilke and
Adami, 2002) with simplified developmental programs. Such
an approximation is becoming more common in evolutionary
studies. The success of some of these models is extraordinary
in providing insight into the evolution of complex biological
systems. As pointed out by Gould, such a range of success is
a consequence of universal laws of change that are common to
all complex systems (Gould, 2003). In this context, we can
conjecture that digital developmental programs might also
share generic properties with real, early development.
Previous theoretical studies have shown that the fact of randomly
wiring gene networks within a tissue context allows a
high diversity of patterns and that spatial patterns are
easily obtained (Solé era/, 2002). But no theoretical
study has addressed the question of the potential
diversity of (stable) patterns that can be obtained by
tuning the number of genes involved in creating them,
provided that some simple initial signal (an activated
gene) is present at the beginning of development. Here
we will explore this question by means of a simplified
model of early development in which the number of
different cell types is optimized. In this context, we
specifically ask the following questions:

1. Whatare the consequences of searching for stable
patterns of increasing complexity, being complexity
measured in terms of the number of cell types?

2. What are the minimal requirements in terms of
gene regulation complexity in order to be able to
reach a wide spectrum of spatial patterns?

3. What type of spatial patterns are obtained?

4. How does the evolution of these patterns take
place in terms of the underlying fitness landscape?
5. Can a combinatorial explosion partially explain
the tempo and mode of the Cambrian event?
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Fig.2.(A) Geneinteractions in early development. These are a subset of gene regulatory
interactions that take place in Drosophila development. Arrows indicate different types
of positive and negative interactions among different genes. In (B) the simplified,
discrete threshold model considered here is shown. Each gene is treated as a binary
(Boolean) variable with only two states: active (1) or inactive (0). It integrates the input
signals which are weighted through a matrix of links W (either positive or negative). The
output Y is obtained by using a threshold function, such as the one indicated in (C).

As will be shown below, the model approach provides non-
trivial, tentative answers to the previous questions.

Gene network model

A complete model of the gene activity pattern even at early
stages of development would require a detailed description of the
different levels of gene regulation and signaling (Arnone and
Davidson, 1997). Such a description should take into account the
continuous nature of MRNA and protein levels as well as other
considerations related to the nature and distribution of cell signal-
ing molecules and the stochastic nature of their dynamics. In this
context, abstract models only taking into account a small amount
of key features often capture the essential ingredients of gene
regulation dynamics (Hasty efa/, 2001; Solé and Pastor-
Satorras, 2002).

As a matter of fact, it has been recently shown that discrete,
ON-OFF models of early development can actually provide com-
plete enough information in order to reproduce the key traits of a
developmental pattern (Bodnar, 1997; Mendoza et a/, 1999;
Sanchez and Thieffry, 2001; Albert and Othmer, 2003). As dis-
cussed in (Albert and Othmer, 2003) within the context of the
expression pattern of segment polarity genes in Drosophiia, the
observed patterns are determined by the topology of the network
and the type of regulatory interactions between components. This
is consistent with recent computer models indicating that a robust
segment polarity module exists and that it is rather insensitive to
variation in kinetic parameters (von Dassow et a/, 2000) (see
also (Meir et al, 2002; Gibson, 2002)). In other words, a com-
plete description of both wild type patterns and various mutants is
successfully reached by using simple Boolean networks. Here we
take the same approach.

Several choices can be made in dealing with the structure of
the wiring scheme to be used in the regulation network. One
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possibility is to restrict ourselves to a hierarchical
cascade of interactions inspired in the topology of
interactions of Drosophila. Butitis known that even gap
genes are not completely hierarchical (Gehring, 1998).
Some of them may act to switch on others (Fig. 2A).
Actually, this property characterizes other gene groups
as well, reminding us that we are actually dealing with
= a complex network instead of a linear chain of steps
i (Arthur, 1997).
The model explored here is a gene threshold sys-
~  tem, described by a set of A/genes per cell, interacting
through a one-dimensional domain involving C cells,
as shown in Fig. 3. The set of genes involved represent
those required to build the basic structure and are thus
bauplan genes (as defined in (Tautz and
- Schmid, 1998)). Here gene states will be Boolean:
genes are either active (1) or inactive (0). Two types of
elements will be considered: Ggenes and #hormones,
with V= G+ H. Genes interact within the cell, whose
state at a given time fwill be indicated as g,/.'(o, with /=
1,...,G as the gene number and /= 1,...,C as the cell
number (ordered from anterior to posterior). Generi-
cally labeled microhormones (Jackson et al., 1986)
involve some implicit local mediators communicating
neighboring cells. These hormones can receive inputs
from any of the first G units, but they can only make
output to genes in other cells. The state of these A hormones
will be accordingly indicated as /7/(1).

Two matrices will be required in order to define the whole
spectrum of links between different elements. These two matri-
ces will be indicated by A = (4) and B = (B,), defining
interactions among the G genes and between genes and
hormones, respectively.

Fig. 3. Modeling morphogenesis using simple gene network models.
Here the simulated organism is a one-dimensional array of cells. Each cell
contains the same set of N genes, G of which (indicated by blue balls) only
interact inside the cell whereas H others (red balls) act as microhormones,
exchanging information with neighboring cells.
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The basic set of equations of our gene network model are:

with

Mt S OB RN
P L

where &(x,y) is an “OR” function (that is, 8(x,y) = 1 if either x=1 or
y=1and zero if x= )= 0). The function ©(x) is a threshold function
(thatis, ©(x) =1 if x>0 and ©(x) = 0 otherwise) and is shown in
Fig. 2C.

Therefore, genes are influenced either by genes or hormones
and hormones are influenced just by genes and the influences GIj
and H/ add up to determine if genes will be active or inactive by the
comparison to a threshold (in this case 0), as shown in Fig. 2B. The
OR function, or 8(x,y), is used here as a substitute for the diffusion
of microhormone to the neighbours, since a microhormone will be
seen as active in cell /if either of its neighbours is active.

For cells at the boundaries we have the special terms:

indicating that cells at the poles just have one neighbour.

Finally, we need to define an initial condition. The simplest
choice that can be defined involves the activation of a single gene
at the anterior (/= 1) pole, as well as the symmetric case in which
the signal is present at the two poles (/= 1 and /= C). Specifically,
we set g{0) = #40) =0 forall /= 1,...,V,, except g,}(0) = 1 in the
single pole case and an additional g,V (0) = 1 in the symmetric
case. These choices correspond to maternal signals confined to
the embryo’s extremes. Such initial change will propagate to the
rest of the tissue provided that the network is sensitive to it.

As an example of the dynamics, the temporal evolution of one
sample organism with one-pole maternal signal is shown in Fig. 4.

Adaptive walks

Using the above mentioned gene network model of pattern
formation, we now explore how pattern complexity emerges
through a simple evolutionary algorithm where a population of 2
organisms evolve through adaptive walks. Such type of algorithm
has been successfully used in different contexts (see for example
(Niklas, 1994, 1997)).

In order to define the evolution algorithm, we need to first
define a fitness function. Here we restrict ourselves to measuring
the number of different cell types. The number of cell types is a
good measure of complexity which is known to increase through
metazoan evolution (Valentine et a/, 1994; Carroll, 2001). In-
creases in cell type number provide a high potential for further

evolution of anatomical and functional complexity, essentially
through division of labor and the formation of specialized tissues
(Maynard-Smith and Szathmary, 1995). It is clear that the diver-
sity of organisms involving a small number of cell types is fairly
limited and thus a first step towards the evolution of complex
organisms requires an expansion of their diversity of cell types.
Actually, as discussed by Erwin and Davidson, regulatory pro-
cesses underlying cell-type specification are very old and display
conserved plesiomorphic features (Erwin and Davidson, 2002).
Morphogenetic processes would have evolved independently
and added at later stages.

We consider, then, the number of cell types 77_,as our complex-
ity measure and formulate the following question. What are the
consequences for the diversity of spatial patterns that can be
generated if we increase the number of cell types?

Starting from a homogeneous population of Pidentical organ-
isms, we perform adaptive walks on the fitness landscape. At
each generation in the algorithm, we sequentially choose each
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Fig. 4. The temporal construction of a pattern in a G = 3 gene and H
=2 hormone network. (A) Scheme of representation. (B) The 20 steps
necessary to reach a stable pattern. Genes in black are active and genes
in gray are inactive.
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organism and introduce a single change in its gene network.
Three types of changes can occur, with probability 1/3, all of them
affecting the dependencies between genes:

* addition of new links,

« removal of previously present links, and

¢ randomization of links’ weights.

Inthis way the complexity of the network can be tuned indepen-
dently for each organism.

After the change, the developmental pattern generated by the
organism is simulated. The number of different cell types 7./ is
computed using this new pattern and it is compared with the
previous one, 72,/1. If n,.f> n f* the change is accepted and the
new organism replaces the old one. Otherwise the change is
rejected and the old organism is kept. The fact that we keep the
new organismif 77 /= 7 /! (the exact developmental pattern might
be different), introduces a certain amount of neutrality that may
reduce the probability that an organism gets trapped because it
cannot find any changes that give it a higher number of cell types.
As an additional requirement, the stability of the final pattern is
enforced by rejecting those organisms which do notreach a stable
state in /iterations. This is a strong constrain, since puts a hard
limit on the attainable patterns, but it also seems sensible, for
developmental processes are very robust and only display tran-
sient oscillations.
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Fig. 5. (A) The number of stable spatial patterns obtained for different
combinations of genes and microhormones from the adaptive walk algo-
rithm. Here two sets of numerical experiments were performed, involving
one and two hormones and varying numbers of genes. In (B) the corre-
sponding numbers of cell types are shown for the two cases. Note the
saturation towards the maximum numbern, = C as the total number of
genes increases. For each point, 5 simulations of 15,000 generations were
performed with C = 9, P = 500 and | = 100.
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The size of the space of possible patterns is rather high, since
the number of combinations of the activation of genes in each cell
gives rise to a potential number of patterns of

I'l — .jl H 4 fll:'“I

Actually, the tissue context exponentially expands the al-
lowed space I, of cell types reachable by isolated cells, which
has asize || = 2H*©) (i.e. we have || = | J¢). Even for a small
number of cells and a small amount of genes, the resulting
space is hyperastronomically large. For example, if we take G
+ H = 4 (which is one particularly interesting case, as shown
below) we have |I'| = 250 (approximately 10%7).

In order to explore the potential repertoire of structures that
can be generated, we will focus in the set of stable spatial
patterns I'g associated to each single gene (independently of
others), from the set of possible spatial patterns, with |I'g| =2¢
This is equivalent to consider the raw capacity to generate
specific patterns without regarding any gene as more important
than any other. Therefore, a population of organisms at any
given generation has a corresponding set of patterns, P, the
onestaken from all the patterns that the genes in each organism
generate individually in the developmental process. Any pat-
tern in this list occurs in some specific genes in some organ-
isms, across the different cells and with a different frequency,
which we also measure.

Results

As an overall trend, simulations proceed in the direction of
increasing the number of patterns |P |, as the average number
of cell types grows generation by generation. Given that every
organism in the population performs its own adaptive walk, one
would expect the behavior of the average of the population
would reflect some of the structure of the landscape. For
instance, should there be any special local peaks in which an
organism could get trapped, one would find many organisms
there. As we will see, this is not the case.

A graph of |P | and the number of cell types achieved after
15000 generations for different numbers of genes and hor-
monesis showninFig. 5. Asthe number of genesincreases, the
number of patterns discovered increases, with a tendency to
saturate at high G. Since the total number of possible patterns
is, for C=9, | |=29=512, itis clear that the population almost
finds all the possible patterns for high G. This is even more
evident if we look at the number of cell types, which reaches a
value of almost 9, the maximum. From this curves itis also clear
the simple change from one to two microhormones makes the
system much less constrained and therefore more patterns are
found.

As mentioned earlier, given a population, many organisms
generate some patterns more than once. In fact, the distribution
Hr) of patterns generated has an interesting structure, as shown
in Fig. 6. Here patterns are sorted out by their rank 7(i. e. by their
order from the most to the least frequent). Some patterns, espe-
cially those with a small number of active cells at the anterior pole,
are very frequent. Some others, on the contrary, are very scarce.
The distribution follows approximately the form of a power law, i.e.
Ar) ~ r % with a close to one.
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Palterm rank

Fig. 6. Frequency-rank distribution of complex patterns obtained
from the adaptive walk evolutionary algorithm, for 15,000 genera-
tions, here with G=3,H =2 and P =500 (a log-log plot is shown in the
inset). A power decay is obtained, indicating a majority of patterns present
in the final population, but also a long tail of less common patterns. Some
examples are indicated. Most common patterns involve activation close to
the anterior pole, but more complex patterns, such as stripes, appear to be
rather frequent. As we move towards the tail of the distribution, more rich,
asymmetric patterns are observed.

The frequent patters are, roughly, those that start the repeting
process that generates a wave across the organism but remain
active only near the anterior pole. Since less combinations exist for
that type of patterns, more organisms will generate the same ones.
The rare patterns seem to be those that are the result of the
construction process and may vary considerably in its exact
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values, since many more different combinations exist. In Fig. 4, the
pattern generated by g, would be an example of a “starter” and thus
more frequent and the g, would be an example of a possible rare
one.

Given a fixed Gand A, two other parameters affect the number
of patterns one obtains. On the one hand, the maximum number of
iterations to attain a stable pattern, /and, on the other, the number
of organisms in the population, A2, If /is smaller, less patterns are
discovered since those patterns that may stabilize in a higher
number of iterations are filtered out. If Pis larger, the landscape is
explored more extensively and more patterns are discovered. Two
figures demonstrate this dependence: Fig. 7 shows two different
runs with different population sizes all other parameters being
equal, showing how the bigger population attains a bigger number
of patterns; Fig. 8 shows the exact dependency.

The most surprising results, however, involve the repertoire
of spatial patterns for small-sized gene networks. The basic set
of patterns obtained is shown in Fig. 9 for C= 15 cells, where
the results from the two types of initial activations (one pole at
left, two poles at right) are shown. As we can see, the repertoire
is fairly limited, even if we use G= 3 genes and /=1 hormones.
Most patterns are rather homogeneous, displaying a small
gradient or single stripes, although some patterns with wider
stripes are also observable, thus indicating that the richness of
dynamical patterns transiently generated by coupled genes can
stably propagate even with only one hormone.

The situation, however, dramatically changes once we cross a
complexity threshold. If #=2,G= 2, a very large number of patterns
becomes available. In Fig. 10 the resulting stable patterns are shown
under the same simulation conditions. Now we can see that the
number of different patterns, |P,|=239 and |P,|=154 for one and two
maternal signals, respectively, is comparable to the number of
organisms involved. The diversity is also remarkable: many different
orderings in the stripe and gap distributions are obtained, suggesting
that a very high universe of combinations is compatible with a high
diversity of cell types.
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Fig. 7 (Left). Time evolution of the number of stable patterns (P) for two different population sizes. The other parametersare C = 15,G =2, H
= 2. The inset displays the same evolution in log-linear scale. A straight line in such a plot indicates a logarithmic increase in the number of patterns,

consistent with a rugged landscape.

Fig.8 (Right). The number of stable patterns (P) for different population sizes. The other parametersareC = 15, G = 2,H = 2and 15,000 generations.
The dashed line shows a curve that fits the data with a power function, i.e. f(x) = ax? with an exponent of B= 0.498 + 0.02.
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Fig. 9 (Left). Taxonomy of patterns created from a system with
different numbers of genes and microhormones at the subcritical
regime. The left side of this figure shows the single pole case, whereas the
right shows the symmetric one. A small amount of possible patterns is
obtained, indicating that the possible repertoire of structures is fairly
limited. Once two hormones are involved, it gets possible to obtain stable
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stripes, but only the most regular combinations are allowed. The experiment involved a population of P = 500 individuals for 15,000 generations.

Fig. 10 (Right). As in Fig. 9, but now using G=2 and H=2. A much higher diversity of patterns is generated, revealing a combinatorial explosion of spatial
motifs. The combination of complex patterns of gene interactions together with a combination of two microhormones leads to a great diversity of patterns
of gene expression. The upper part shows the patterns for a single-pole maternal signal, whereas the lower part show the ones for the symmetric case.

Discussion

Any simple model of pattern formation does necessarily intro-
duce shortcuts that limit the range of conclusions that can be safely
reached. Our model does not include a large number of relevant
features, from cell division to biologically realistic regulatory mecha-
nisms. Butagain, as stressed in previous sections, some key, large
scale features of complex systems do not depend on the specific
details involved at lower levels (Solé and Goodwin, 2001). This is
fairly well exemplified by Boolean models of Drosgphila develop-
ment.

Our results can be summarized as follows (providing a tentative
list of answers to the list of questions presented in the first section):
1. Using the number of cell types as a complexity measure, our

model indicates that the whole spectrum of spatial patterns is

potentially reachable, provided that the population of digital
organisms is large enough. Maximal diversity of cell types is

2.

positively correlated with the diversity of spatial patterns gener-
ated. This suggests that increasing cellular diversity is consis-
tent with highly flexible pattern-forming mechanisms.

If a single hormone is involved, complex patterns can be
obtained by increasing the network complexity. A much more
rapid increase is obtained by using two hormones. Actually, the
combination of two genes + two hormones leads to a combina-
torial explosion of spatial patterns. As a consequence, our
results indicate that, provided the number of organisms is large
enough, any pattern seems to be available.

. The spectrum of spatial patterns of gene expression is domi-

nated by gap-like structures, stripes and all kind of combina-
tions between them. It is remarkable that all classes of spatial
structures are easily identified as matching the spatial distribu-
tion of maternal, gap and pair-rule gene expression patterns.
Some genes (as it occurs in real development) are only
transiently activated and thus appear in the end as absent.
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4. The population climbs the underlying landscape in such a way
that the rate of finding local peaks increases in a logarithmic
fashion. This implies that a rapid diversification is followed by
a further slowdown, in agreement with a rugged fitness land-
scape.

5. The jumpin pattern diversity experienced at /= G=2indicates
that thresholds in network complexity, even at small-gene
numbers exist and can lead to combinatorial explosions. Such
explosions would open a whole spectrum of available struc-
tures. Reaching such a threshold might require the formation
of a minimal regulatory network and might also require other
prerequisites dealing with body size, cellular interactions and
tissue specialization. However, once in place, the whole uni-
verse of patterns can be made suddenly available.

The previous results support the idea that the Cambrian event
(and perhaps other rapid diversification events) might result from
changes in the pattern of gene regulation. Of course the model
does not consider ecological or other factors that might have
played a key role. Instead, we concentrate in the study of the
generative potential of such a simple model and in the universe of
possible spatial patterns that can be generated. As a result, we
obtain a surprising jump once a threshold of genetic complexity is
reached. Although the whole repertoire of patterns might need
some exploratory effort to be reached, most patterns are easily
found and once alarge fraction of them has been obtained, further
innovation occurs at a slower pace.

The main message of this paper is that rapid diversification
events in terms of generation of evolutionary novelty in develop-
mental processes can take place through combinatorial explo-
sions. Although it can be argued that the model is too simple, the
exploration of continuous counterparts of these results give very
similar outcomes (particularly the thesholds of network complex-
ity). Additionally, the continuous models allow to increase the
repertoire of patterns and the same applies to discrete models
using Boolean (instead of threshold) functions. In other words, the
choices made here actually limit the diversity of patterns that can
be generated.
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