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ABSTRACT  Members of the Sox gene family play roles in many biological processes including 
organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes 
(Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodif-
ferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed 
in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the 
early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas 
two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic 
spatio-temporal expression during tooth development.
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Teeth develop from sequential and reciprocal interactions between 
epithelium and neural crest-derived mesenchyme. The first mor-
phological sign of tooth development is an epithelial thickening on 
the first branchial arch. The thickened epithelium then progressively 
takes the form of the bud, cap and bell configurations. Primary 
enamel knots appear as thickened inner enamel epithelium at the 
early cap stage, but disappear by the late cap stage. Subsequently, 
epithelial cells differentiate into enamel-producing ameloblasts and 
dentin-producing odontoblasts differentiate from mesenchymal 
cells (dental papilla). It is known that many signaling pathways 
such as Bmp, Fgf, Wnt, and Shh play critical roles in regulating 
tooth development (Tucker and Sharpe, 2004). 

Sox proteins are characterized by a highly conserved DNA 
binding motif, HMG (high mobility group) domain, and twenty Sox 
genes have been identified in mice. Members of the Sox gene 
family show dynamic and diverse expression patterns during 
development and mutation analyses in humans and mice provide 
evidence that they play multiple roles during development (Pevny 
and Lovell-Badge 1997, Hosking and Koopman 2008, Wegner 1999, 
Oommen et al., 2012). Sox2 has been shown to be expressed in 
rodent tooth germs including the incisor cervical loops (Ohazama 
et al., 2010; Juuri et al., 2012, 2013; Zhang et al., 2012). The 
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expression of other members of Sox family in tooth development 
however remains unstudied. 

We carried out comparative in situ hybridization analysis of six-
teen Sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis, 
and reveal dynamic spatio-temporal expression of Sox 2, 4, 5, 6, 
8, 9, 11, 12, 13, 14, 17, 18 and 21 in molar tooth development. 

Results 

Sox genes are classified into nine subgroups according to homol-
ogy within the HMG domain and other structural motifs, as well as 
functional assays (Pevny and Lovell-Badge 1997, Wegner 1999). 

Group B
Sox1, Sox2 and Sox3 belong to the B1 group of Sox family. 

Sox2 expression has been shown in tooth development (Ohazama 
et al., 2010; Juuri et al., 2012, 2013; Zhang et al., 2012). Sox2 is 
expressed in tooth epithelium at the initiation stage (E10.5 and 
E11.5; Fig. 1 F,G). At the bud stage (E13.5) and the cap stage 
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(E14.5), Sox2 showed restricted expression in lingual bud epi-
thelium (Fig. 1 H,I). Significant expression of Sox2 is not found 
in tooth germs at E18.5 (Fig.1J). Although Sox1 and Sox3 belong 
to same group (B1) as Sox2, neither Sox1 nor Sox3 expression 
could be detected in tooth germs from E10.5 to E18.5 (Fig. 1 A-E, 
1 K-O). Sox14 and Sox21 belong to the B2 group of Sox family. 
At the initiation stage, weak expression of Sox14 was observed 
in presumptive tooth epithelium, whereas Sox21 showed no ex-
pression (Fig. 1 P,Q,U,V). At the bud stage (E13.5), Sox21 was 
weakly expressed in the collar of tooth bud epithelium, although 
no expression of Sox14 was observed in tooth germs (Fig. 1R,W). 
At the cap stage (E14.5), neither Sox14 nor Sox21 expression 
could be detected in tooth germs (Fig. 1S,X). At the cytodiffer-
entiation stages (E18.5), weak Sox21 expression was observed 
in pre-ameloblasts localized at the presumptive cusp region, and 
Sox14 showed no expression in tooth germs (Fig. 1T,Y).

Group C
Sox4, Sox11 and Sox12 belong to the C group of Sox family. 

Sox4 and Sox11 were expressed in presumptive tooth epithelium 
and mesenchyme at both E10.5 and E11.5, whereas Sox12 showed 
no expression (Fig. 2 A,B,F,G,K,L). At E13.5, Sox4 was strongly 
expressed in tooth mesenchyme and the centre of bud epithelium, 
and Sox11 expression was observed in basal epithelium of tooth 
bud epithelium (Fig. 2C,H). Punctate expression of Sox12 was 
observed in both tooth epithelium and mesenchyme (Fig. 2M). At 
the cap stage, Sox4 was expressed in inner enamel epithelium, 
stellate reticulum, dental papillae and mesenchyme facing buccal 
outer enamel epithelium, whereas outer tooth enamel epithelium 
showed weak expression (Fig. 2D). Sox11 was expressed in the 
cervical loop of molar tooth epithelium and outer enamel epithe-
lium, whereas Sox12 expression could not be detected in tooth 
germs at this stage (Fig. 2I,N). At cytodifferentiation stages, Sox11 

Fig. 1. The expression of Sox genes (Group B) in rodent tooth development. In situ hybridisation of Sox1, Sox2, Sox3, Sox14 and Sox21 on frontal 
head sections at E10.5, E11.5, E13.5, E14.5 and E18.5. Tooth epithelium is outlined in red. Arrowheads indicate the presumptive tooth region.
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expression was observed in pre-ameloblasts, whereas neither 
Sox4 nor Sox12 show expression in tooth germs (Fig. 2 E,J,O).

Group D
Sox5, Sox6 and Sox13 belong to the group D Sox genes. At 

E10.5, Sox5 showed restricted expression in tooth mesenchyme, 
whereas Sox6 and Sox13 expression were observed in both 
presumptive tooth epithelium and mesenchyme (Fig. 3 A,F,K). 
At E11.5, expression of Sox6 was observed in tooth epithelium, 
whereas Sox5 showed weak expression in mesenchyme (Fig. 
3 B,G). Faint expression of Sox13 was observed in both tooth 

Fig. 2. The expression of Sox genes 
(Group C) in rodent tooth develop-
ment. In situ hybridisation of Sox4, 
Sox11 and Sox12 on frontal head sec-
tions at E10.5, E11.5, E13.5, E14.5 and 
E18.5. Tooth epithelium is outlined in 
red. Arrowheads indicate the presump-
tive tooth region. Arrow indicates the 
presumptive alveolar bone region. 

epithelium and mesenchyme at this stage (Fig. 3L). At the bud 
stage, Sox6 and Sox13 showed restricted expression in lingual 
bud epithelium and at the tip of bud epithelium, respectively (Fig. 
3 H,M). No expression of Sox5 could be detected in tooth germs 
(Fig. 3C). At the cap stage, Sox5 was weakly expressed in dental 
papillae, whereas Sox13 expression was observed in the primary 
enamel knot (Fig. 3 D,N). Sox6 showed restricted expression in 
lingual outer enamel epithelium (Fig. 3I). At cytodifferentiaton 
stages, Sox5 showed weak expression in dental papillae and 
odontoblasts, whereas neither Sox6 nor Sox13 were expressed 
in tooth germs (Fig. 3 E,J,O).
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Group E
Sox8, Sox9 and Sox10 belong to the group E Sox genes. Sox10 

showed no expression in tooth germs from E10.5 to E18.5 (Fig. 
4 K-O). Sox9 showed expression in both tooth epithelium and 
mesenchyme at E10.5, which became weak at E11.5 (Fig. 4 F,G, 
Mitsiadis et al., 1998). No expression of Sox8 could be detected 
in tooth germs at E10.5 or E11.5 (Fig. 4 A,B). At bud stage, Sox9 
was weakly expressed in tooth epithelium, whereas no Sox8 
expression was observed in tooth germs (Fig. 4 C,H). At the cap 
stage, weak expression of Sox8 was observed in inner enamel 

epithelium and dental papilllae, whereas Sox9 showed expression 
in outer enamel epithelium and collar of tooth epithelium (Fig. 4 
D,I). At E18.5, weak expression of Sox8 was observed in pre-
ameloblasts, whereas Sox9 was expressed in rostral developing 
pulp and caudal stellate reticulum (Fig. 4 E,J).

Group F
Sox7, Sox17 and Sox18 belong to the group F Sox genes. 

A punctate expression pattern of Sox7 and Sox18 were seen 
throughout the mesenchyme at E10.5-E14.5 (Fig. 5 A-D, 5 K-N). 

Fig. 3. The expression of Sox genes (Group D) in rodent tooth development. In situ hybridisation of Sox5, Sox6 and Sox13 on frontal head sections 
at E10.5, E11.5, E13.5, E14.5 and E18.5. Tooth epithelium is outlined in red. Arrowheads indicate the presumptive tooth region. 
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Sox17 showed similar expression, but weaker than those of Sox7 
and Sox18 at these stages (Fig. 5 F-I). At E18.5, Sox17 was ex-
pressed in pre-ameloblasts, whereas Sox18 showed restricted 
expression in mesenchyme underneath presumptive cusp and 
facing cervical loops (Fig. 5 J,O). Sox7 showed no expression 
in tooth germs at E18.5 (Fig. 5E). 

Transgenic mice
It has been shown that epithelial conditional Sox2 mutation using 

ShhCre led to no significant changes of molars (Juuri et al., 2013). 

In common with previous reports, significant anomalies could not 
be detected in molars in Sox2 mutants using K14Cre mice (Fig. 
6B). To further analyze the role of Sox2 in tooth development, 
we examine mice overexpressing under the keratin 5 promoter 
(Krt5-Cre;Rosa26Sox2/+). However, no obvious differences could 
be detected in molar tooth germs in Krt5-Cre;Rosa26Sox2/+ mice 
(Fig. 6C). Our data from in situ hybridization analysis shows Sox6 
showed similar a expression pattern to Sox2 in tooth develop-
ment (Fig. 1 F-J, 3 F-J). In order to investigate the role of Sox6 
in tooth development, we examined Sox6 mutant mice (p100H 

Fig. 4. The expression of Sox genes (Group E) in rodent tooth development. In situ hybridisation of Sox8, Sox9 and Sox10 on frontal head sections 
at E10.5, E11.5, E13.5, E14.5 and E18.5. Tooth epithelium is outlined in red. Arrowheads indicate the presumptive tooth region. 
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homozygotes). Significant differences however could not be 
detected in mutant molars (Fig. 6D).

Discussion

Members of the Sox gene family show dynamic and diverse 
expression patterns during development of many organs, and 
analysis of mutations in mice suggest that member of Sox gene 
family play multiple roles during development (Pevny and Lovell-
Badge 1997). Our results also show dynamic spatio-temporal 

expression of Sox genes in developing tooth germs. 
It has been shown that Sox2 plays a critical role in regulat-

ing molar dental lamina growth (Juuri et al., 2013). Sox2 is also 
expressed in the lingual bud and cap epithelium, although Sox2 
mutant molars show no significant morphological changes (Juuri 
et al., 2013). We found that Sox6 have a similar expression pattern 
to Sox2 in tooth development. No siginificant anomalies however 
could be detected in Sox6 mutant molars. It has been shown that 
there is the redundancy between different Sox group members, 
and it is possible that Sox2 function is compensated by Sox6 in 

Fig. 5. The expression of Sox genes (Group F) in rodent tooth development. In situ hybridisation of Sox7, Sox17 and Sox18 on frontal head sections 
at E10.5, E11.5, E13.5, E14.5 and E18.5. Tooth epithelium is outlined in red. Arrowheads indicate the presumptive tooth region. 
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molar tooth development (Ito 2010). 
Oligodontia have been shown in patients with Sox5 haploin-

sufficiency (Lamb et al., 2012). We found that the expression of 
Sox5 was observed in tooth mesenchyme at early stages of tooth 
development. Although the first tooth inductive signals are known 
to be derived from tooth epithelium at E9.5 and E10.5, mesen-
chymal cells provide signals back to the tooth epithelium at E11.5 
(Ferguson et. al., 2000). Sox5 has been shown to be associated 
with Bmp and Shh signaling (Chimal-Monroy et al., 2003, Hojo 
et al., 2013). Both signaling pathways are known to be activated 
in tooth mesenchyme at early stages, and are essential for tooth 
development (Yang et al., 2014, Hardcastle et al., 1998, Li et al., 
2011, Jeong et al., 2004). Sox5 might play a critical role in initia-
tion of tooth development by regulating these signaling pathways. 

The primary enamel knot is known to play a role in regulating 
tooth shape. Expression of many molecules including Shh have 
been identified in the primary enamel knots (Tucker and Sharpe, 
2004). Our results showed the expression of Sox13 in the primary 
enamel knots, and Sox13 has been shown to be involved in Shh 
signaling (Katoh and Katoh 2008). It is possible that Sox13 regulate 
tooth shape through involving Shh.

Sox18 mutations has been shown to result in the extensive 
detachment of developing oral epithelium from the underlying 
mesenchymal tissue due to abnormal hemidesmosome formation 
(Oommen et al., 2012). Abnormal teeth including enamel hypopla-
sia and extensive dental caries have been described in blistering 
diseases such as epidermolysis bullosa that is caused by disorder 
of hemidesmosomes (Kirkham et al., 2000, Wright et al., 1993). It 
is known that the interaction between odontoblasts, ameloblasts, 
and basement membrane play a critical role in enamel/dentin 
formation (Tucker and Sharpe 2004, Fukumoto et al., 2005). We 
found Sox18 expression in odontoblasts. It is possible that Sox18 
is involved in enamel/dentin formation. 

Materials and Methods 

Production and analysis of transgenic mice
The production of mice with mutation of Sox6 (p100H) have previously 

been described (Hagiwara et al., 2000). Krt5-Cre;Rosa26loxp-STOP-loxp-
Sox2-IRES-eGFP (Krt5Cre;Rosa26Sox2/+), Keratin(K)14Cre and Sox2fl/
fl mice were bred as described by Liu et al.,2013), Andl et al., (2004) and 
Teranova et al.,2006), respectively. CD1 mice were used for radioactive in 
situ hybridization. The day on which vaginal plugs were found was consid-
ered as embryonic day (E) 0.5. To accurately assess the age of embryos, 
somite pairs were counted and the stage confirmed using morphological 
criteria such as relative size of maxillary and mandibular primordia, extent 
of nasal placode invagination, and the size of limb buds. Mouse heads 
were fixed in 4% paraformaldehyde, embedded and serially sectioned at 
8 mm. Sections were split over 4-10 slides and prepared for histology and 
radioactive in situ hybridisation. Decalcification using 0.5M EDTA was 
performed after fixation of E18.5 mice.

In situ hybridization
Radioactive in situ hybridization with 35S-UTP-radiolabelled riboprobes 

was performed as described previously by Ohazama et al., 2008. 
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