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ABSTRACT  Although the vertebrate head has evolved to a wide collection of adaptive shapes, the 
fundamental signalling pathways and cellular events that outline the head skeleton have proven 
to be highly conserved. This conservation suggests that major morphological differences are due 
to changes in differentiation and morphogenetic programs downstream of a well-maintained de-
velopmental prepattern. Here we provide a brief examination of the mechanisms and pathways 
responsible for vertebrate head development, as well as an overview of the animal models suitable 
for studying face development. In addition, we describe the criteria for neurocristopathy classifica-
tion, highlighting the contribution of zebrafish to the modelling of Treacher Collins/Franceschetti 
Syndrome, an emblematic neurocristopathy. The contributions from our laboratory reveal that 
proper zebrafish head development depends on the fine-tuning of developmental-gene expres-
sion mediated by nucleic acid binding proteins able to regulate DNA conformation and / or the 
neuroepithelium redox state. 
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Introduction

Vertebrates are the most species-rich and geographically 
dispersed deuterostomes on the Earth. This is likely due to the 
advantages provided by the evolution of key innovations such 
as a bony skull and jaws, vitals for a predatory lifestyle. In the 
most primitive vertebrates, the presence of pharyngeal pumping 
favored early development success by simply increasing the rates 
of respiration and filter feeding (Gans and Northcutt, 1983). Then, 
the evolution of the specialized structures facilitated the shift from 
passive to active feeding behaviors, thus enabling the extraor-
dinary radiation of the vertebrate lineage (Hall, 2000). Although 
the vertebrate head has evolved to a wide collection of adaptive 
structures for respiration, feeding, communication, and sensing 
the environment, the fundamental signaling pathways and cellular 
events that shape the head skeleton in the embryo have proven 
to be highly conserved. This conservation suggests that major 
morphological differences are due to changes in differentiation 
and morphogenetic programs downstream of a well-maintained 
developmental patterning. 

Much of the skull and the entire pharyngeal skeleton derive from 
the cranial neural crest (cNC). Cranial neural crest cells (cNCCs) 
delaminate from the dorsal neural tube and migrate ventrolater-
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ally to form the ectomesenchyme of facial primordia known as 
the frontonasal prominence (FNP) and pharyngeal arches (PAs; 
also referred to as branchial arches in aquatic species). Induction 
of the NC occurs at the neural plate border (NPB) via a signaling 
interaction between neural and non-neural ectoderm. After their 
specification, NC precursors reside within the elevating neural folds 
and dorsal neural tube until its closure. NCCs then undergo an 
epithelial to mesenchymal transition (EMT) and migrate ventrally 
from the neuroepithelium to distant sites throughout the embryo, 
often traveling great distances before reaching their destination 
and differentiating into a variety of derivatives (Martik and Bronner, 
2017; Mayor and Theveneau, 2013). cNCC migration occurs as 
three topographically conserved streams as proceed towards the 
pharynx: pre-oral and PA1 cells in the first stream, PA2 cells in 
the second stream, and pharyngeal arch (PAs 3+) cells in the third 
stream (Fig. 1). The cNCC-negative regions (between the streams) 
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are consistently situated beneath rhombomeres 3 and 5 of the brain 
(Theveneau and Mayor, 2012). Each uniquely stream is molecularly 
defined by hox gene expression (see below). In addition, studies 
from multiple model organisms have revealed that cNCC migration 
is regulated by a variety of repulsive signals and chemo-attractants 
(Halloran and Berndt, 2003; Mayor and Theveneau, 2013). 

Subsequently, the FNP becomes the mid- and upper face, while 
the first PA (PA1) develops into most of the jaw, the lateral skull, 
palate, and the middle ear. PA1 is further divided into maxillary 
arch (prospective upper jaw) on the proximal half and mandibular 
arch (prospective lower jaw) on the distal half. The second PA 
(PA2) mainly contributes to the ear and neck skeleton (reviewed 
in Parada and Chai, 2015). Alterations in the establishment and/or 
maintenance of specific developmental domains of cNCC leads to 
craniofacial pathologies collectively classified into neurocristopathies 
(NCP) (Bolande, 1997). 

Focusing on the cNC, the aim of the present article is to review 
our current understanding of the vertebrate face development. 

 
Gene expression control during rostral head 
development

Gene regulatory network (GRN) governing cNCC differentiation 
Comparative analyses performed on numerous animal models 

and using various experimental methodologies (tissue transplants, 
in situ hybridizations, gain - and loss-of-function) allowed identify-
ing the GRNs governing the progressive and conserved steps that 
NCCs undergo during development – specification, EMT/delamina-
tion, migration, and differentiation. Data enabled to build a classi-
cal sequential model consisting of a hierarchical series of circuits 
contributing to the various stages of NC development. According 

to this model, NCCs activate only one of many alternative cell fate 
programs. Indeed, the action of Fgf, Wnt, Notch, and Bmp specify 
the NPB between non-neural and neural ectoderm, and leads to the 
expression of NPB-specifier genes, such as Pax3/7, Tfap2, Msx, 
among others. The expression of NPB-specifier genes induces 
the expression of a set of NC-specifier genes (Snail1/2, Foxd3, 
Twist, Sox5/6, Pax3/7, Ets1, Myc, Myb, Id, Tfap2, and Sox9/10) in 
the NPB, which then promote EMT and migration (Ebf1 and RxrG 
expression start to be detected) (reviewed in Martik and Bronner, 
2017). Cranial-specific regulators acting in a hierarchical pathway 
has been recently involved in establishing cNC identity in avian 
embryos. At the top of this pathway is Brn3c, which is necessary 
for the activation of Dmbx1 in the anterior NPB. Subsequently, Lhx5 
and Dmbx1 drive the expression of Tfap2b and Sox8 in the dorsal 
neural folds. Finally, Tfap2b activates the expression of Ets1 as 
the NC becomes specified (Simoes-Costa and Bronner, 2016). In 
zebrafish, lhx5 and dmbx1 are expressed in the early cNCC. In ad-
dition, sox8b, sox10, tfap2a, and ets1, but not pou4f3 (the ortholog 
of brn3c in zebrafish) are expressed in premigratory and migratory 
cNCC at all axial levels. Noteworthy, this cranial-specific GRN is 
absent from other NC subpopulations and sufficient to provide to the 
cNCC with its unique potential to differentiate into the craniofacial 
skeleton of vertebrates (Martik and Bronner, 2017). Lastly, cNCC 
diversifies in chondrocytes by the expression of Sox9, Sox5/6 and 
Col2a1. Sox9 regulates cartilage formation by binding and activating 
the chondrocyte specific enhancer of the collagen type II (Col2a1) 
gene (Lefebvre et al., 1997), thus promoting differentiation of the 
undifferentiated mesenchymal cells into chondrocytes (Akiyama 
and Lefebvre, 2011). 

More recently, single-cell analysis combined with spatial tran-
scriptomics of murine NCCs enabled the identification of substages 

Fig. 1. Segmental and directional migration of cranial neural crest cells (cNCCs) in a representative vertebrate embryo. (A) Dlx dorso-ventral gene 
expression pattern displayed by green and brown color codes. (B) Colored arrows represent the patterns of migration of cNCCs into the frontonasal 
process (FNP; violet code) and pharyngeal arches 1 (PA1; light-blue code) and 2 (PA2; orange code). Migrating cNCCs express SoxE (S), Twist (T), Ets 
(E), and Msx2 (M). The action of End1, Shh, BMP, and Fgf pathways in the FNP, PA1, and PA2 surrounding tissues regulate proliferation, differentiation, 
and morphogenesis in the pharynx and oral regions. (C) Craniofacial derivatives from the different cNCCs sub-populations in the human skeleton. (D) 
Hox antero-posterior gene expression pattern displayed by violet and orange-red color codes.
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of EMT during trunk NCC delamination (Soldatov et al., 2019). Data 
showed that pre-EMT NCCs express genes associated with NPB 
and neural tube identity, which are then down-regulated in more 
advanced cells allowing the up-regulation of NC specific genes. Be-
sides, Soldatov et al., (2019) showed that migrating NCCs undergo 
a series of sequential binary fate restrictions and spatiotemporal 
segregation that involves initial coactivation of bipotential properties 
followed by gradual shifts toward commitment. The first bifurcation 
separates progenitors of the sensory lineage from those of auto-
nomic and mesenchymal fates. Then, additional binary decisions 
separate autonomic neuronal fate from mesenchymal differentia-
tion. Therefore, cellular fate is defined by the internal (autonomous 
activation of genes) and external (signals from neighboring cells) 
events that progenitors have experienced. According to this new 
model, progenitor cells may initially co-activate more than one gene 
expression program depending on their own history, thus leading 
to mutually exclusive and competitive cellular fates. Soldatov et al., 
(2019) also showed that, after delamination, a neuronal program is 
activated in the trunk, whereas cNCCs acquire ectomesenchyme 
potential upon activation of the transcription factor Twist1. Indeed, 
sustained overexpression of Twist1, normally activated upon de-
lamination only in the cranial compartment, is sufficient to define 
the mesenchymal potential of migrating NCC and the subsequent 
cNCC differentiation (Soldatov et al., 2019). 

 
Transcription factors expressed in the pharynx and oral regions

cNCCs entering the pharynx and oral region are exposed to a 
range of intercellular signals, including Endothelin 1 (End1), Sonic 
Hedgehog (Shh), BMPs, and Fgfs, which regulate proliferation, dif-
ferentiation, and morphogenesis (Fig. 1). Edn1-induced signaling 
through the Endothelin typeA receptor (Ednra) is crucial for cNCC 
patterning within the mandibular portion of the PA1, from which the 
lower jaw arises. cNCCs express Ednra whereas Edn1 expres-
sion is limited to the overlying ectoderm, core paraxial mesoderm, 
and endoderm of the mandibular arch. Deletion of Edn1, Ednra 
or endothelin-converting enzyme in mice causes the homeotic 
transformation of mandibular arch-derived structures into more 
maxillary-like structures. End1/Ednra signaling induces the expres-
sion of Dlx5 and Dlx6 (see below) and the consequent dorso/ventral 
identity of the PA1 (Clouthier et al., 2010). NCCs themselves do 
not express Shh; however, Shh signal from the pharyngeal endo-
derm provides the cNCC with information about the size, shape, 
and orientation of the skeletal elements that will eventually form 
from the PAs. Shh signaling from the craniofacial ectoderm is also 
involved in patterning the outgrowth and development of the facial 
primordia. At early stages, Shh expression from the forebrain acts 
on the cNCC, which then induce Shh expression in the frontonasal 
ectoderm zone, regulating proximodistal and dorsoventral patterning 
in the craniofacial complex (Abramyan, 2019). The BMP signaling 
pathway is an important regulator in the shaping of the skeletal 
system, patterning the NC and craniofacial development. BMP2/
BMP4, which can be secreted from cNCCs, binds to BMP receptor 
types I and II. This binding further activates the intracellular Smads 
phosphorylation and translocation into the nucleus, thus triggering 
bone-related gene expression, such as Msx2 (Chen et al., 2020). 
When early Fgf signals are lost, the endodermal pouches of the 
PA fail to form, and then, the pharyngeal cartilages are reduced 
or absent. Later, Fgf signals from the pharyngeal endoderm are 
required for induction and survival of chondrogenic precursors. 

cNCCs differentiate into collagen-containing cellular cartilage and 
related skeletal tissues by activating the expression of a core set 
of transcription factors that appear to drive skeletal differentiation 
in all cNCCs (Fig. 1), including SoxE, Twist, and Ets (Meulemans 
and Bronner-Fraser, 2004). The conserved expression of these 
factors in all modern vertebrates suggests they mark evolutionarily 
conserved subpopulations of skeletal precursors present in their 
most recent common ancestor. However, how these genes confer 
regional shape and morphology still remains unclear (see Square 
et al., 2017 for details). 

During craniofacial development, Dlx family genes are regionally 
expressed within PAs conferring dorsal-ventral positional identity 
(Fig. 1). At mid-pharyngula stages, dlx genes appear in nested 
PA expression domains (Depew et al., 2002; Square et al., 2017), 
which are established immediately after cNCCs stop their migra-
tion. Thus, Dlx1/2 are expressed in both prospective upper and 
lower jaw territories, whereas Dlx5/6 are expressed in prospective 
lower jaw only. Dlx3/4 expression is further restricted to a narrow 
domain within the prospective lower jaw territory. Dlx1/2 and 5/6 
act partially redundantly and antagonistically, depending on the 
context, to achieve differential expression of their downstream 
genes in prospective upper and lower domains (Jeong et al., 2008). 
Dlx5/6 are not only required for lower jaw patterning, but also for 
the dorsal nasal capsule (Gitton et al., 2011). 

 
Hox expression in the pharyngeal arches confers specific 
positional identities to cNCCs

Differential Hox expression confers NCCs antero-posterior axis 
identity. cNCCs migrating in stream 2 (hyoid) are the most anterior 
NCC to express Hox genes; they arise from the Hox-2 expressing 
region of the hindbrain. In contrast, cNCC in stream 1 (mandibular) 
arise from Hoxnegative regions of the anterior hindbrain and midbrain 
(Fig. 1). Loss of Hox group 2 gene function and overexpression of 
Hox genes in cNC of stream 1 result in homeotic transformations sug-
gesting that the Hox expression status of cNC confers a subsequent 
positional identity, which is given by the cNC origin in the hindbrain 
(reviewed in Parker et al., 2018). However, molecular regulation of 
Hox-2 gene expression in migrating cNCC is independent to that 
in the hindbrain (Maconochie et al., 1999), indicating that cNCC 
final fate is not dictated simply by its hindbrain origin, but requires 
signals from adjacent tissues. An extensive and detailed review 
describing the role of Hox-genes in cNCC development has been 
recently published (Parker et al., 2018). Authors have addressed 
outstanding questions relating the interactions between Hox regula-
tory pathways and the cNCC-GRN. Collected data led the authors 
to propose an auto-/cross-regulation between both the Hox-GRN 
and the cNCC-GRN (Parker et al., 2018). 

 
Epigenetic regulation of cranial neural crest cells

Evidences of epigenetic control in cNCC development have been 
formerly well-reviewed (Hu et al., 2014; Strobl-Mazzulla and Bron-
ner, 2014). Therefore, we summarize the more relevant evidences 
reported beyond the publication of the mentioned reviews. 

 
DNA methylation 

Most of the evidences showing a role of DNA methylation dur-
ing NC development came from the analysis of the consequences 
generated by varying the levels of DNA methyl-transferases (Dnmt), 
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demethylases, or folate (the precursor of S-adenosylmethionine; 
Beaudin and Stover, 2007). 

Mutations in human Dnmt3B was found linked to craniofacial 
defects (Jin et al., 2008) and, zebrafish Dnmt3 was reported partici-
pating in a specific histone methyltransferase network responsible 
for the silencing of critical regulators of cNCC fate (Rai et al., 2010). 
In chicken, Dnmt3A and B participate in NCC early determination 
and timing by methylating CpG located into regulatory regions of 
specific NC genes, such as Sox2/3 (Hu et al., 2012) and Sox10 
(Hu et al., 2014). 

 FolR1 and Rfc1, two of the main folate transporters, are robustly 
expressed in the neural tube and NCC, and their knockdown results 
in profound orofacial defects. Abrogation of either folate uptake 
or metabolism affects DNA methylation on the Sox2 locus in the 
dorsal neural tube at the expense of NC marker expression. This 
finding suggests that DNA methylation restricts Sox2 expression in 
the dorsal neural tube, allowing the acquisition of NC identity and 
preventing neural fate on the dorsal neural tube (Alata Jimenez 
et al., 2018). 

 
Histone modifications 

Histone methylation-demethylation
Different approaches (including comparative histone methyl-

ated marks studies, specific inhibition, knock-down or deletion 
of methylases, demethylases or folate transporters) have shown 
that dynamic histone methylation is critical for proper temporal 
control of gene expression in the cNC. Early postmigratory NCC 
subpopulations contributing to distinct craniofacial structures display 
similar chromatin accessibility patterns, but present differential 
transcriptional activities. Accessible promoters and enhancers of 
differentially silenced genes carry H3K27me3/H3K4me2 bivalent 
chromatin marks embedded in large Polycomb repressive domains. 
As H3K27me3 antagonizes H3K4me2 deposition at Polycomb 
domains, the regulatory elements and promoters of positional 
genes would switch from a poised to an active or inactive chromatin 
state, thus contributing to establish NCC subpopulation–specific 
transcriptional identities (Minoux et al., 2017). 

FolR1 and Rfc1 knocked-down in chicken embryos also show 
a reduction of the level of H3K4me3, H3K9me3, H3K27me3, and 
H3K36me3 epigenetic marks in the neural tube and NC territory, 
indicating that folate-dependent H3 methylation is required for 
proper NC formation and the normal orofacial formation (Alata 
Jimenez et al., 2018). Mice carrying a conditional deletion of the 
H3K9 methyltransferase G9A in NCC display incomplete ossifica-
tion and 20% shorter jaws. G9A inhibition up-regulates Twist1 and 
Twist2, likely by removing repressive H3K9me2 marks catalyzed by 
G9A in regulatory regions of Twist genes (Higashihori et al., 2017).

In zebrafish, depletion of prdm3 or prdm16, two members of 
the Positive regulatory domain histone methyltransferase family, 
causes hypoplasia of the craniofacial cartilage elements, undefined 
posterior ceratobranchials, and decreased mineralization of the 
parasphenoid. In mice, while loss of Prdm3 in the early embryo 
causes mid-gestation lethality, loss of Prdm16 causes anterior 
mandibular hypoplasia, clefting in the secondary palate, and severe 
middle ear defects (Shull et al., 2020). 

Finally, histone demethylation was reported playing a role in 
craniofacial development. Indeed, in X. laevis developing embryos, 
depletion of kdm3a, which specifically demethylates mono and di 

methylated H3K9, produces head deformities, small‑sized eyes 
and abnormal pigmentation (Lee et al., 2019). In chicken, loss of 
the histone demethylase JumonjiD2A (JmjD2A/KDM4A), which 
is expressed in the forming neural folds, causes dramatic down-
regulation of Snail2 and Sox10, two typical NC-specifier genes 
(Strobl-Mazzulla et al., 2010). 

 
Histone acetylation

Chromatin modifications via modulating histone acetylation 
by means of histone deacetylases (HDACs) and histone acetyl 
transferases (HATs) activities have an essential role in several 
steps of NC development. In zebrafish, hdac4 knocked-down em-
bryos exhibit loss of cNC derived palatal skeletal precursor cells, 
which results in defects in the developing palate (Delaurier et al., 
2012); besides, CRISPR/Cas9 hdac4-mutant shows a significant 
increase in pharyngeal ceratohyal cartilages ossification (DeLaurier 
et al., 2019). Precocious cartilage ossification was also reported 
in Hdac4mutant mice (DeLaurier et al., 2019). In human, HDAC4 
haploinsufficiency was associated with brachydactyly mental 
retardation syndrome (Williams et al., 2010), single nucleotide 
polymorphisms in the HDAC4 gene were linked to nonsyndromic 
oral clefts (Park et al., 2006), and inhibition of HDAC4 during 
pregnancy was shown to increase the chances of generating cleft 
lip and palate (Wyszynski et al., 2005). 

The HAT zebrafish kat6a rescues the aberrant hox patterning, 
histone hypoacetylation, and ectopic ceratobranchial formation 
caused by nitric oxide synthase inhibitor 1-(2-[trifluoromethyl] 
phenyl) imidazole (Kong et al., 2014). Single and double kat2a and 
kat2b zebrafish mutants display an overall shortening of cranio-
facial cartilages and a disruption of the posterior ceratobranchial 
cartilage pattern. Similarly, Kat2a mutant mice show defects in 
the craniofacial skeleton, including hypoplastic bone and cartilage 
along with altered expression of typical cartilage marker genes 
(Sen et al., 2018). 

 
Chromatin structure

Chromatin architecture is regulated in NCC by several compo-
nents of chromatin-remodeling complexes. The chromodomain 
helicase DNA-binding domain CHD7 (Vissers et al., 2004) and 
Williams syndrome transcription factor (WSTF) (Lu et al., 1998) 
genes were associated with CHARGE and Williams syndromes, 
respectively, both characterized by typical craniofacial malforma-
tions. Haploinsufficiency in Brg1, one of the catalytic subunits 
of chromatin-remodeler SWI/SNF complex, affects neural tube 
closure and results in peri-natal mice lethality (Smith-Roe and 
Bultman, 2013). 

Zebrafish brg1 mutants display a cluster of NCC-related defects, 
including abnormal jaw skeleton differentiation. Apart from the 
classical B-form, non-B (non-canonical) DNA structures may form 
depending on specific sequence motifs, DNA modification state, or 
interactions with proteins or RNAs. Among the non-B DNA struc-
tures, G-quadruplexes (G4s) outstand as a stable intramolecular 
secondary structure formed in G-rich single-stranded DNA. G4s are 
highly associated to regulatory and nucleosome-depleted chromatin 
regions and co-localize with active genes (Hänsel-Hertsch et al., 
2016). G4s may affect transcriptional activity through two different 
way of actions: i) altering per se the structure in nucleosome-
depleted chromatin (Armas et al., 2017); ii) anchoring different 
proteins involved in epigenetic processes (Varizhuk et al., 2019). In 
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zebrafish, the presence of conserved G4s in the proximal promoter 
regions of col2a1 and nog3 enhances transcription; in agreement, 
the abrogation of G4-folding leads to aberrant craniofacial phe-
notypes (Armas and Calcaterra, 2018; David et al., 2016). Nog3 
expression is repressed by CNBP, a protein capable of binding and 
unfolding G4s structures (David et al., 2019). Depletion of CNBP 
adversely affects craniofacial development in chicken, mice, and 
zebrafish (Calcaterra et al., 2010; Sdrigotti et al., 2017; Weiner 
et al., 2011), suggesting that G4s are novel epigenetic elements 
involved in cNCC development. 

 
microRNAs (miRNAs)

Many miRNAs have been identified as key players in different 
developmental stages of craniofacial structures. However, this 
information is still scattered and scarce, making it difficult to gen-
eralize the participation of particular miRNAs in specific GRNs. In 
many cases, although differentially expressed miRNAs have been 
identified, the molecular targets have not yet been found. Exten-
sive studies regarding the role of miRNAs in NC development and 
facial morphogenesis have been recently published (Tavares et 
al., 2015; Weiner, 2018); here we summarized the main evidences 
reported so far. 

 
Data from depletion of Dicer 

MiRNA biogenesis involves several stages catalyzed by differ-
ent specific enzymes, among which the RNase III endonuclease 
Dicer plays a fundamental role. Therefore, the analysis of Dicer 
mutants and/or morphants has provided relevant evidence for 
miRNAs function in craniofacial morphogenesis. In mice, Dicer-
deleted gene under the control of Col2a1 promoter display severe 
skeletal defects and premature death due to progressive reduc-
tion in chondrocyte proliferation and precocious differentiation 
to hypertrophic chondrocytes (Kobayashi et al., 2008). In Dicer 
conditional knockout through Pax2-Cre-driver line, secondary 
palatal development becomes arrested prior to mineralization and 
apoptotic markers are overexpressed. MiR-101b, miR-140, and 
miR-145 are significantly downregulated in these Dicer mutant 
mice (Barritt et al., 2012). In Xenopus, Dicer knock-down results 
in a severe cranial cartilage malformations (Gessert et al., 2010). 
Significant shortening of ceratohyal, hyosymplectic-palatoquadrate, 
and Meckel cartilages was observed in zebrafish Dicer mutant and 
morphant larvae (Weiner et al., 2019). 

 
Data collected from the study of specific miRNA families in mice 

Knockouts for the miR-17~92 family show expanded Tbx1 and 
Tbx3 expression in craniofacial structures (Wang et al., 2013) and 
hypoplasia of most skull bones, including reduced ossification and 
cleft palate phenocopying abnormalities observed in Feingold 
syndrome patients (Tassano et al., 2013). Aberrations in the Tgfb 
signaling by interactions between Tgfbr2 and miR-17~92 may 
explain the cleft-palate phenotype (Ries et al., 2017). 

Studies in pre-osteoblast cell culture evidence that miR-141 
and miR-200a target Dlx5 (Itoh et al., 2009). The miR-452 targets 
Wnt5a, which down-regulates Shh signaling and indirectly promotes 
Dlx2 expression in the neighboring cNCC-derived mesenchyme. 
The knockdown of miR-452, thus, down-regulates Dlx2 expression 
in the PA1 (Sheehy et al., 2010). 

A high-throughput miRNA sequencing study carried out in 
developing-facial structures allows detecting hundreds of miRNAs 

differentially expressed. Among them, miR-23b and miR-133b 
were suggested as required for proper craniofacial development 
(Ding et al., 2016). The murine calvaria have several membrane 
bones with different tissue origins (NC derived frontal bone vs. 
mesoderm-derived parietal bone). In a recent small RNA deep 
sequencing study, a total of 83 differentially expressed miRNAs in 
frontal bones vs. parietal bones have been identified, which may 
count for the difference in osteogenic capacities of both tissues 
(Chen et al., 2019).

 
Data from other experimental models 

At least 170 differentially expressed miRNAs have been found 
by next-generation sequencing and computational annotation 
approaches, showing a remarkably dynamic regulation of miRNA 
expression during chicken, duck, and quail cNCC before and after 
species-specific facial distinctions take place. Data suggest that 
differential proliferation rates can influence the depth, width, and 
curvature of the beak, being miRNAs involved in the different cel-
lular transitions (Powder et al., 2012). 

In Xenopus, the depletion of miR-96, miR-196a, and miR-200b 
results in abnormal cranial cartilage structures (Gessert et al., 
2010). miR-96 represses Tbx1 expression and Tbx1 represses 
miR-96 (Gao et al., 2015), probably working in a regulatory loop 
during cNCC differentiation. 

In zebrafish, the BMP-miR-17-92 cluster pathway mentioned 
above also plays a role in cartilage differentiation. MiR-92a knock-
down leads to disruption of cartilage morphogenesis by binding 
to the mRNA encoding the Bmp inhibitor nog3 (Ning et al., 2013). 
The knock-down of miR27 causes severe defects in the neurocra-
nium by impaired proliferation and differentiation of chondrogenic 
progenitors (Kara et al., 2017). MiR-27 targets the focal adhesion 
kinase Ptk2aa, a key regulator in integrin-mediated extracellular 
matrix adhesion proposed to function as a negative regulator of 
chondrogenesis (Kara et al., 2017). MiR-140 was found to directly 
downregulate the pdfgra expression, a gene required for cNCC 
migration and differentiation (Eberhart et al., 2008). Targeted dele-
tion of the miR-199/214 cluster leads to severe skeletal problems 
in axial and craniofacial structures (Watanabe et al., 2008). Pri-
miR-199-3a and pri-miR-214a are enriched in the mesenchyme 
surrounding the developing craniofacial structures during zebrafish 
development (Desvignes et al., 2014). 

Although great advances in the field of epigenetic regulation 
of NC development have been achieved, knowledge about how 
epigenetic mechanisms work individually and in groups to finetune 
the spatio-temporal expression of critical NC-specifier genes is 
still incomplete. 

 
Animal experimental models for studying cNC 
development

Much of the evidence for gene functions in head skeletal de-
velopment comes from gene molecular association underlying 
human craniofacial defects (Watt and Trainor, 2014). However, 
vertebrate animal models offer a vital platform for understanding 
key processes during craniofacial development, providing generally 
consistent genetic backgrounds, multiple replicates, and extensive 
information concerning their embryology. Moreover, advances in 
genomics and bioinformatics have accelerated the identification 
of genes controlling craniofacial development, as well as regula-
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tory processes that go awry in disease in a broad spectrum of 
vertebrate species. Data generated in such studies, whether in a 
particular model or in combination of models, approach the un-
derstanding of the mechanisms involved in face morphogenesis 
and the etiology of associated diseases. 

For many years, the avian and Xenopus models have been 
widely used mainly due to the size of the egg, the ease of handling 
the embryo, simplicity of live cell imaging, and the conserved 
genetic pathways with mammals. The avian model also has the 
possibility of performing graft/transplantation experiments (Le 
Douarin, 2012). However, both models display relatively long 
generation times and the inconvenience of performing genetic 
studies, transgenic, or even the no fusion of secondary palate in 
the case of chicken or absence of palate in the case of Xenopus 
(Van Otterloo et al., 2016). 

The mouse has been used for decades as an important model 
for studying gene function during face development. It is closely 
related to human and display similar morphogenesis, contains 
highly conserved cis-regulatory elements, is accessible to CRISPRs 
gene-editing and to powerful forward and reverse genetics (Van 
Otterloo et al., 2016). For example, genetics enabled to address 
the stage-dependent fate mapping of NCC and their derivatives 
or fate mapping in vivo single cell tracing using inducible forms 
of Cre-recombinase in Cre-loxP-based conditional genetic re-
combination approaches (Baggiolini et al., 2015; Kaucka et al., 
2016; Soldatov et al., 2019). Apart from confirming in mice many 
of the findings obtained by fate mapping of avian NCC, genetic 
lineage tracing of murine NCC led to the identification of minor 
NC-derived cell populations present in tissues of non-NC origin, to 
the establishment of novel lineage trees, and to the demonstration 
of in vivo multipotency of single premigratory and migratory NCC 
(Debbache et al., 2018). In addition, robust strategies for gener-
ating null or conditional mice knockouts have been developed. 

Many mutants exhibit aberrant craniofacial phenotypes, leading 
to important discoveries linked to human craniofacial malforma-
tions (Watt and Trainor, 2014). Nevertheless, the mouse model 
has the disadvantage of the in-utero development, which makes 
difficult assessing the earliest embryonic stages. 

Despite the relatively short time that zebrafish has been used 
for the study of craniofacial morphogenesis, the combination of 
genetics and embryology afforded by the zebrafish embryo has 
led to many insights into the mechanisms that pattern the early 
craniofacial skeleton. The strengths of the zebrafish complement 
genetic studies in mice and embryological studies in chicken. 
Zebrafish form essentially all of the same skeletal and muscle 
tissue types as their higher vertebrate counterparts, but in much 
more simple spatial patterns composed of smaller cell numbers. 
Cartilage development is particularly rapid, and by five days 
post-fertilization most of the cartilages of the pharyngeal skel-
eton are well-formed (Schilling and Kimmel, 1994) and can be 
easily visualized by Alcian Blue staining (Schilling and Webb, 
2007). A Plug-in for ImageJ has been developed to quantify the 
consequences of gene expression variations (Rosas et al., 2019; 
Weiner et al., 2019), drug treatments (Cedron et al., 2020), or any 
other experimental approach designed for assessing changes in 
craniofacial cartilage pattern (Fig. 2). 

Nowadays, CRISPR-Cas9 gene edition is an efficient and robust 
technique used in zebrafish (Liu et al., 2019). Zebrafish embryos 
are particularly well-suited for mutagenesis screenings based 
simply on visual inspection via a dissecting microscope, allowing 
for powerful in vivo analysis of gene function. Mutant screenings 
allowed the identification of new players in cell signaling during 
face morphogenesis (Jayasena and Bronner, 2012; Yelick and 
Schilling, 2002), leading to detailed GRN that subsequently in-
formed human clinical data (Yelick and Schilling, 2002). Besides, 
various transgenic reporter lines allowed the visualization of NCC 

MA
PQ

CeD
CrD

CeA
ML

Ce

EMBRYO TREATMENT
(INJECTION/INCUBATION/OTHER)

FERTILIZED 
EMBRYOS IMAGE 

ADQUISITION & PROCESSING
(ImageJ+PLUG-IN)

DATA
 ANALYSIS

LARVAE GROWING & 
ALCIAN BLUE STAINING

0,6
0,8
1,0
1,2

*

TC

*
PQ MA

TC
0,6
0,8
1,0
1,2

Fig. 2. Sequential strategy for craniofacial cartilage phenotype assessing in developing zebrafish. Early fertilized embryos injected with differ-
ent kind of molecules (Morpholino, CRISPR/Cas, ASO or others) or incubated in the presence of drugs are allowed to develop until 5-6 dpf. Images of 
Alcian Blue stained larval head cartilages are digitalized by using ImageJ software (NIH) equipped with a Plug-in allowing simultaneously assessing 
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statistical analysis (schematically shown for two parameters PQ and MA where C, control; T, treated). 
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and craniofacial lineages at different stages of differentiation in 
zebrafish embryos/larvae. Confocal microscopy images or time-
lapse movies allow identifying the molecular and cellular basis 
of craniofacial morphogenesis and disease (McGurk et al., 2014; 
Schilling et al., 2010). 

Of course, some of the assets of the zebrafish model can also 
be disadvantages. The small size of embryos and larvae that can 
be a benefit for some experiments (large number of individuals in 
small places) can make it difficult to collect adequate amounts of 
tissue for others. Similarly, the number of zebrafish-compatible 
biologicals (e.g. antibodies) and the utility of zebrafish cell culture 
and transplantation are limited compared with those for other ani-
mal models. While facilitating experiments involving water-soluble 
drug administration, the opposite is also true and water insoluble 
materials are difficult to introduce in fish media (Gut et al., 2017). 

The mouse has been typically considered the best model 
for both studying human development and modeling human 
diseases. However, it is not clear whether differences between 
mouse and other species reflect true generalities for mammals 
or are peculiarities of mouse development. Therefore, the use of 
different complementary models could broaden the knowledge 
of the molecular bases and processes governing the normal and 
pathological development of the vertebrate rostral head. 

 
Neurocristopathies (NCP)

NCP are a class of pathologies occurring mainly in humans that 
result from the abnormal specification, migration, differentiation 
or death of NCC during embryonic development. The term was 
proposed by Robert P. Bolande in 1974 (Bolande, 1974), who 
highlighted aberrant NC development as a “common denomina-
tor” of a large set of human pathologies. 

 
NCP classifications 

Bolande initially divided NCP in two main categories: Simple 
and Complex and NCP syndromes (Bolande, 1974). This former 
classification was then further subdivided based on clinical as-
sessments (Bolande, 1997). Besides, a classification accord-
ing to NC affected process (Etchevers et al., 2006) and, more 
recently, another based on the axial origin of the affected NC 
population (Vega-Lopez et al., 2018) have been proposed (Fig. 
3A). Interestingly, Vega-Lopez et al., considered that many NCP 
are due to anomalous development not only of the NC, but also 
of the adjacent tissues. Authors also suggested that epigenetic 
mechanisms ruling NCCs development play a role in NCP es-
tablishment. Ciliopathies (pathologies affecting the assembly of 
the primary cilia; Vega-Lopez et al., 2018) and environmental 
factors (comprehensively discussed in Cerrizuela et al., 2020) 
have been recently reported influencing NC development and, 
thus, contributing to NCP. 

 
Modelling NCP in zebrafish: the TCS experience 

TCS is a genetic condition characterized by bilateral facial 
features, such as malar and mandibular hypoplasia, downward-
slanting palpebral fissures, coloboma of the lower lid, microtia, 
and it often is associated with conductive hearing loss (Watt and 
Trainor, 2014). The prevalence is estimated to be between 1 in 
10,000-50,000 individuals in the general population. However, 
some mildly affected individuals may go undiagnosed, making it 

difficult to determine the disorder’s true frequency in the popula-
tion (https://rarediseases.org/rare-diseases/treacher-collins-syn-
drome/). A remarkable feature of TCS is the inter- and intra-family 
variation in phenotype severity, which reasons are not clear yet 
(Watt and Trainor, 2014). 

Approximately 80% of TCS patients have a mutation in the 
TCOF1 gene, with an autosomal dominant inheritance. Mutations 
in POLR1B, POLR1C, and POLR1D occur in 10-15% of patients 
(Ghesh et al., 2019; Sanchez et al., 2019). Around 4% of cases 
remain with an unidentified molecular defect. Different mutations 
such as deletions, insertions, splicing, missense and nonsense 
mutations have been detected in both TCOF1 and POLR1 genes 
(Splendore et al., 2005; Teber et al., 2004; Vincent et al., 2016). 
Nonetheless, no clear correlation between a specific type of mu-
tation and the resulting TCS phenotype has yet been described 
(Ghesh et al., 2019; Splendore et al., 2005; Vincent et al., 2016). 
The overall information regarding TCS molecular features was 
gained by modelling the NCP in mice and zebrafish. In both 
cases, aberrant craniofacial phenotypes are due to a deficit of 
rRNAs synthesised by RNA pol I (Jones et al., 2008; Lau et al., 
2016; Noack Watt et al., 2016; Porcel De Peralta et al., 2016; 
Sanchez et al., 2019). The nucleolar stress triggered by deficient 
ribosomal biogenesis leads to extensive p53-mediated apoptosis 
in the neuroepithelium at the cNC formation stage (Jones et al., 
2008; Noack Watt et al., 2016; Porcel De Peralta et al., 2016; 
Sanchez et al., 2019; Weiner et al., 2012). It seems that molecular 
pathogenic mechanisms underlying TCS are similar and can be 
well-assessed in both zebrafish and mice. In addition, zebrafish 
has the advantage of allowing assessing non-invasive and inves-
tigational treatments in an easy and economic manner (Fig. 3B). 

 
TCS & zebrafish: looking for prevention 

Zebrafish is not only an excellent model to study craniofacial 
genetics but, once a disease model is stablished, it also helps to 
assay therapies and strategies to ameliorate disease (Widrick et 
al., 2019). Below we describe some approaches regarding TCS 
performed using zebrafish. 

 
P53 inhibitors

Researchers are exploring ways to inhibit p53 function or block 
the mechanisms leading to p53 activation as possible therapeutic 
treatments to prevent the development of TCS. Studies in the 
Tcof1+/- C57BL/6 mice indicate that intraperitoneal administra-
tion to pregnant females for three consecutive days (from E6.5 
to E8.5) of pifithrin-alpha (PFT-a, a small synthetic p53 inhibitor 
that is used in neuroscience to block neuronal apoptotic cell 
death; Zhu et al., 2002), reduces neuroepithelial cell–specific 
apoptosis (Jones et al., 2008). Similar results were obtained by 
injecting specific p53-MO in TCS1-like zebrafish embryos and in 
TCS3-like fish in a tp53M241K background (Lau et al., 2016; Porcel 
De Peralta et al., 2016). Evidence based on pharmacological and 
genetic experiments indicates that temporary suppression of p53 
by PFT-a and genetic silencing does not increase the frequency of 
cancer (Gudkov and Komarova, 2010). However, the use of p53 
inhibitors for the treatment of p53-related pathologies may raise a 
safety concern because an increased risk of tumour development 
is observed in mice and humans with p53 deficiency (Donehower 
et al., 1992). There are no currently available FDA-approved p53 
clinical uses of PFT-a (or analogues) as potential agent for the 
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treatment of TCS. Zebrafish is especially suited for performing 
research to determine the doses, therapeutic windows, long-term 
safety, and effectiveness of such approaches. 

 
Antioxidant therapy

Recent advances in TCS-like mice indicate that dietary anti-
oxidant supplementation protect NCCs against damage during 
embryogenesis and facilitate normal craniofacial development 
(Noack Watt et al., 2016). Similar results were obtained in a TCS1-
like zebrafish model when embryos developed in the presence of 
N-acetylcysteine (Porcel De Peralta et al., 2016). Again, zebrafish is 
excellent for checking antioxidant supplements (Nayak et al., 2018). 

 
Proteasome inhibition 

As mentioned above, CNBP plays a role in forebrain and cra-
niofacial development likely by controlling gene expression through 
G4-unfolding (Calcaterra et al., 2010; David et al.,2019; Weiner et 
al., 2011). CNBP is degraded through the proteasomal pathway 
and its over-expression prevents TCS-like phenotypes in zebrafish 
(Porcel De Peralta et al., 2016). Treatment of TCS-like zebraf-
ish embryos with proteasome inhibitors MG132 and Bortezomib 
(Velcade®, Millennium laboratories) abrogates CNBP degradation, 
attenuates neuroepithelial cell death and cell redox imbalance, 
and produces a robust craniofacial cartilage phenotype recovery 
(Rosas et al., 2019). Therefore, proteasome inhibitors, which are 

approved for multiple myeloma and mantle cell lymphoma treat-
ments (de Bettignies and Coux, 2010), may offer an opportunity for 
TCS molecular and phenotypic manifestation’s prevention. Although 
further development of new safe inhibitors compatible with admin-
istration during pregnancy is required, results suggest additional 
mechanisms operating in TCS pathogenesis and also encourage 
the testing of proteasome inhibitors in other TCS animal models. 

 
Concluding remarks

Numerous studies conducted in different experimental models 
have contributed to the identification of specific genes and GRNs 
together with epigenetic mechanisms underlying cNCC deter-
mination, migration, and differentiation that are central to head 
development. In this context, the contributions from our laboratory 
reveal that proper zebrafish head development depends on the 
fine-tuning of developmental-gene expression mediated by nucleic 
acid binding proteins able to regulate the DNA conformation (David 
et al., 2016; David et al., 2019) and / or neuroepithelium redox state 
(Porcel de Peralta et al., 2016; Gil Rosas et al., 2019). Both the 
knock-down and overexpression of such proteins generate cranio-
facial abnormalities mainly due to aberrant craniofacial cartilages 
development (Sdrigotti el al., 2017; Weiner et al., 2007; Weiner et 
al., 2011), mimicking typical craniofacial phenotypes observed in 
TCS-patients (Weiner et al., 2012; Porcel de Peralta et al., 2016; 
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Rosas et al., 2019). 
Recently, both the identification of novel cNC-specific tran-

scription factors using ChIP-Seq and RNA-Seq approaches and 
open enhancers through ATAC-Seq screenings has contributed to 
partially deciphering the cNC GRN complexity. Future researches 
should point to new technologies, mainly those ones based on 
the “omics” and the bioinformatic expertise, aimed to study entire 
organismal changes at every level from pre-transcriptional to post-
translational regulation. 

Although divergent in some specific aspects, data generated from 
different vertebrate models have contributed to broadly comprehend 
the normal processes of head development and to elucidate the 
aberrant processes responsible for numerous NCP. Understanding 
the etiology and pathogenesis of individual conditions and knowing 
whether they arise due to defects in cNCC determination, migra-
tion, and/or differentiation will be instrumental in designing realistic 
avenues for therapeutic NCP prevention.  
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