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Strontium-doped hydroxyapatite  
and its role in osteogenesis and angiogenesis
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ABSTRACT	 For the past 50 years, hydroxyapatite (HA) has been widely used in bone defect repair be-
cause it is the main inorganic component of the mineral phase of a human bone. Extensive preclinical 
and clinical studies have shown that strontium (Sr) can safely and effectively help prevent and treat bone 
diseases, including osteoporosis. These findings have resulted in the concept of integrating Sr and HA 
for bone disease management. The doped Sr can improve the physicochemical properties of HA and 
enhance its angiogenic and bone regeneration ability. Nevertheless, no study has reviewed the design 
strategy of Sr-doped HA (Sr-HA) to understand its biological roles. Therefore, in this article, we review 
recent developments in Sr-HA preparation and its effect on osteogenesis and angiogenesis in vitro and 
in vivo along with key suggestions for future research and development.
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Introduction

The clinical treatment of serious segmental bone defects caused 
by trauma or bone tumors is challenging. Moreover, seeking an 
alternative to autologous bone grafting is one of the major goals 
of bone tissue engineering. Bone engineering has been extensively 
studied by researchers over the past few decades. Consequently, 
many artificial bone materials have been developed. HA has gar-
nered extensive attention from researchers because this main 
inorganic component of bone tissues (Jarcho et al., 1977; Zhan 
et al., 2005; Kutikov et al., 2015; Deville et al., 2006; Li et al., 2013; 
Poddar et al., 2023) is the most important bone repair/regenera-
tion material owing to its excellent biocompatibility and osteoin-
ductive properties. However, its poor mechanical properties and 
slow degradation limit its application to clinical practice (Rezwan 
et al., 2006). Researchers think that modifying HA may solve the 
mentioned problems. 

Currently, the biological properties of HA-based materials can 
be improved by several methods, including doping other elements, 
heat treatment, and material coating (Shavandi et al., 2015; Shi et 
al., 2020; He et al., 2021; Boanini et al., 2010). Adding certain metal 

ions can improve the physicochemical properties of HA and en-
hance its antibacterial, angiogenic and bone regeneration capacity 
(Turhan et al., 2023). For example, strontium (Sr), magnesium (Mg), 
and zinc (Zn) ions can promote bone regeneration by regulating 
osteoblast and osteoclast activity. 

Mg is the fourth most abundant element in the human body, with 
60% of magnesium deposited in the bones (Laskus and Kolmas, 
2017). Mg alloys began to be used in orthopedics and blood vessels 
in the mid-nineteenth century (Walker et al., 2014). Mg forms bone 
by promoting osteoblast differentiation. He et al., demonstrated 
that Mg metal enhanced the viability and osteogenic differentia-
tion of human bone marrow-derived stromal cells (hBMSCs) (He et 
al., 2016), as did Yang et al., (Yang et al., 2010). It is reported that 
Mg2+ replacement of Ca2+ in HA occurs only to a limited extent, 
up to 10 at.% (Bigi et al., 1996; Yasukawa et al., 1996). Despite 
the limited substitution, the doping of Mg leads to an increase in 
the solubility of HA (Landi et al., 2008), which may be related to 
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the decrease in crystallinity. Meanwhile, the morphology of HA is 
changed to a spherical shape (Berg et al., 2020).

Zn is an essential trace element in the human body, involved 
in DNA and RNA replication, protein synthesis, and bone metabo-
lism (Prasad, 1995). Zn promotes bone metabolism by increasing 
osteoblast activity and collagen synthesis, as well as inhibiting 
osteoclast formation (Yamaguchi and Gao, 1998; Kishi and Ya-
maguchi, 1994). Zn2+ probably replace up to 20% of the Ca2+ in 
the HA lattice (Boanini et al., 2010). Since it causes defects in the 
structure, it makes the lattice more susceptible to disruption (Gut-
salova et al., 2021), which makes Zn-doped HA less soluble than 
conventional HA (Osorio et al., 2014; Hu et al., 2012). Zn-doped HA 
crystals are irregular and form agglomerates, usually in the form 
of rods (Hu et al., 2012).

The trace element Sr is present in the human body at 0.008% 
- 0.01%, which is much lower than that of Ca. However, Sr has a 
strong affinity for bone, especially in metabolically active tissues 
(Dahl et al., 2001). Sr has a dual effect on bone: stimulation of bone 
formation and inhibition of bone resorption (Saidak and Marie, 
2012; Hassan et al., 2023). On the one hand, Sr activates signaling 
pathways such as OPG/RANKL/RANK, NFκB to inhibit osteoclast 
activity; on the other hand, Sr enhances alkaline phosphatase (ALP) 
activity, collagen synthesis, and the formation of osteogenic markers 
to promote bone production (Huang et al., 2020; Zarins et al., 2019; 
Zarins et al., 2018; Rybchyn et al., 2011). Because Sr2+ (0.12 nm) 
has an ionic radius similar to Ca2+(0.099 nm), it can replace Ca 
in the HA structure throughout the compositional range (Boanini 
et al., 2010). A study showed that Sr2+ enters the HA lattice and 

enhances the mechanical strength (Geng et al., 2016). Landi et 
al., confirmed the increase in the solubility of Sr-HA (Landi et al., 
2007). Dai et al., analyzed HX-BGC, a bioactive glass with 1.6 % Sr, 
was in the form of bands and plates (Dai et al., 2021b). Although 
Sr can replace up to 100% of Ca (Frangopol et al., 2016), in one 
study it was found that the HA structure was maintained at Sr 
molar ratios of 2% and 4% in the compound, while it disappeared 
at other different Sr molar ratios (Nagyné-Kovács et al., 2018). In 
addition, the Sr content has an effect on osteogenesis. When the 
Sr concentration exceeds a certain threshold, there will be toxic 
inhibition (Liu et al., 2016). Almeida et al., demonstrated that the 
optimal concentration range of Sr is 1-10 mM, and within this 
range, Sr can effectively enhance the proliferation and activity of 
preosteoblasts, and promote the maturation of osteoblasts into 
osteocytes (Almeida et al., 2016).

Therefore, in this review, we systematically introduce the prepa-
ration method of Sr-HA and provide insights into the effects of 
implanted Sr-HA on osteogenesis and angiogenesis. Furthermore, 
the role of Sr in osteogenesis and vascularization in bone repair 
has also been discussed in detail.

		
Preparation of Sr-Doped hydroxyapatite

HA is an important component of the human skeleton. Because 
of its low solubility in physiological environments, as it is a bioac-
tive material with a high osseointegration capacity that does not 
induce inflammatory reactions on direct contact with hard tissues. 
However, the properties of HA can be easily improved. The Ca2+ 

Method Advantage Disadvantage

Chemical precipitation method 1. Certain interactions exist among the groups 
2. Good permeability and adsorption 
3. Certain inducement

1. Unknown results 
2. Low product purity

Wet process preparation 1. High crystallinity and stability 
2. Resistant to corrosion 
3. Biocompatible

1. The product is not stable 
2. Slow reaction rate and large product particle size

Hydrothermal method 1. No cytotoxicity 
2. Good biocompatibility

1. Thermal stability performance becomes poor 
2. Easy to decompose

Wet microwave synthesis 1. Able to fuse with natural bone 
2. Increased cell growth rate 
3. Strontium content is controllable 
4. Shorten reaction time

Currently not widely used

Table 1

Advantages and disadvantages of the preparation methods of strontium-doped hydroxyapatite (Sr-HA)

Fig. 1. Preparation of strontium-doped hydroxyapatite (Sr-HA) by the chemical precipitation method. 
(Created with BioRender.com).

in the structure can be replaced by Sr2+, 
Zn2+, Cu2+, Fe2+, Ag+, Mg2+ and other 
ions (Dapporto et al., 2022; Ungureanu et 
al., 2023), so Sr can change the HA lattice 
to modify its biological properties in order 
to overcome any potential disadvantages; 
therefore, researchers have integrated Sr 
and HA. Sr-HA can be prepared by sev-
eral methods, and four methods, namely 
chemical precipitation, wet processing, 
hydrothermal preparation, and wet mi-
crowave synthesis, have been discussed 
below. Furthermore, their advantages and 
disadvantages are presented in Table 1.
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Chemical precipitation method
Chemical precipitation method is to use the reaction between 

the reactant solution, by controlling the pH value of the solution, 
the solution precipitates. The crystallization process of precipita-
tion is carried out by controlling the reaction rate, temperature, 
and aging time. It is the most widely used and simplest method 
to prepare Sr-HA. Scaffolds prepared by this method exhibit good 
dispersion and ably meet the requirements of tissue engineering.

In this method, (CaNO3)2·4H2O and (NH4)2HPO4 are used as 
the main reactants. First, 0.5 mol/L Ca(NO3)2 and Sr(NO3)2 solu-
tions are mixed at 45°C together. After the reaction, the pH of the 
solution is adjusted to 10-11 with (NH4)2HPO4. After, precipitates 
are filtered, washed with anhydrous ethanol to remove impurities, 
vacuum-filtered and -dried, and ground to obtain Sr-HA powder (Fig. 
1). The use of Sr/[Ca+Sr] and [Ca+Sr]/P at atomic ratios of 0.5 and 

1.67, respectively, can yield 0.5-nm Sr-HA (Zhu et al., 2022; Catros 
et al., 2010). Ehret and Maqbool et al., (Ehret et al., 2017; Maqbool 
et al., 2021) prepared Sr-HA with good biocompatibility by this 
method without changing the phase composition and crystallinity 
of HA. The reaction mechanism of Sr-HA preparation by chemical 
precipitation is as follows:

(NH4) 2HPO4+NH4OH+ (10-α) Ca (NO3) 2+αSr (NO3) 
2→H2O+SrαCa10-α (PO4) 6 (OH) 2+NH4NO3, α≤10

				  
Wet process method

In this method, (NH4)2HPO4, [Ca(NO3)2, and Sr(NO3)2] solutions 
are mixed at a molar ratio of 1:1, and the molar ratio of Sr/(Ca+Sr) 
is set to 1:100.The solution is then kept in a shaker incubator at 
50°C for 24 h, centrifuged thrice at 3000 r/min, and dried at 80°C 
for 24 h. The obtained blocks are then ground and sieved. Part of 

Fig. 2. Preparation of strontium-
doped hydroxyapatite (Sr-HA) 
by the wet process method. 
(Created with BioRender.com).

the powdered samples are cold-pressed into blocks at 
200 kg pressure and heat treatment at 300°C, 600°C, 
and 900°C for 1 h (Fig. 2) (Pan et al., 2009). Li et al., (Li 
et al., 2019) used this method to prepare Sr-HA, which 
exhibited good biocompatibility and stability, but its 
preparation time is long and the reaction speed is slow. 
It is not widely used in industrial production.

				  
Hydrothermal method

In this method, a 0.5 mol/L [Sr(NO3)2, Ca(NO3)2] solu-
tion and a 0.3 mol/L (NH4)2HPO4 solution are prepared. 
The pH values of these Ca and Sr solutions are adjusted 
to >11 using concentrated ammonia and to >10 using 
a phosphorus solution. Next, a certain amount from 
both solutions is mixed thoroughly, followed by the 
addition of 0.4 g of polyethylene glycol and magnetic 
stirring to dissolve polyethylene glycol. Under the stir-
ring condition, the (NH4)2HPO4 solution is added slowly 
in a dropwise manner to maintain the n (Ca+Sr)/n (P) 
atom ratio at about 1.67, and again the mixture is stirred 
well. Then, it is transferred to a teflon-lined stainless 
steel hydrothermal kettle and heat-treated at 900°C. 
The product is then washed with water, followed by an 
ethanol wash, and filtered. Then the powdered product 
is dried at 80°C overnight (Fig. 3) (Li et al., 2022; Don-
azzon et al., 1998). The reaction mechanism of Sr-HA 

Fig. 3. Preparation of strontium-doped hydroxyapatite (Sr-HA) by the hydrothermal 
method. (Created with BioRender.com).

100.The
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preparation by hydrothermal method is as follows:
(10-x)Ca2++xSr2++6PO43++2OH-→Ca10-xSrx(PO4)6(OH)2
				  

Wet microwave synthesis method
This method is characterized by the simultaneous generation 

of heat at different depths of the material being heated. Compare 
the other three methods, this method allows for faster and more 
uniform heating (Fig. 4).

The crystals of SrCl2, Ca(NO3)2·4H2O, (NH4)2HPO4 are used in this 
method. First, [Ca(NO3)2·SrCl2] and (NH4)2HPO4 solutions of the 0.5 
mol/L are prepared and pH is adjusted to 11 using concentrated 
ammonia. Next, the (NH4)2HPO4 solution is rapidly poured into the 
[Ca(NO3)2·SrCl2] solution and kept in a heating water bath at 80°C. 
The reaction is performed in a microwave oven with the power set 
to 800 W. The slurry is allowed to stand for a while, followed by 
filtration. The sediment is washed with distilled water and then 
with anhydrous ethanol, dried at 800oC, and finally ground (Yu et 
al., 2017; Agrawal et al., 2018). However, the resulting product is 
unstable; hence, this method is not used widely.

			 

Osteogenic effects of Sr and Sr-HA

Owing to the similarity between Sr and Ca, Sr exhibits osteogenic 
properties similar to that exhibited by Ca, which can increase the 
levels of runt-related transcriptional factor 2 (RUNX2) and further 
stimulate Ca sensing receptor (CaSR), thereby inducing mitogen-ac-
tivated protein kinase phosphorylation and activating cell signaling 
pathways, and ultimately increasing primary osteoblast formation 
(Gu et al., 2013). Sr promotes collagen secretion in osteoblasts via 
CaSR, thus increasing the levels of osteopontin (OPN), ALP, bone 
sialoprotein, salivary protein, and osteocalcin during osteoblast 
differentiation (Li et al., 2015). Thus, when Sr-HA is implanted, HA 
forms a strong bond with bone tissues. After coming in contact with 
body fluids, HA is degraded over time, thereby increasing the local 
Sr2+ concentration at the action site. The released Sr2+ exerts its 
osteogenic properties, inducing osteoblast differentiation (Fig. 5) 
(Wan et al., 2020). Brennan observed a dose-dependent increase 
in RUNX2/CBFA1 levels in human primary osteoblasts after Sr-
Ran administration for 10 days. Moreover, OPN mRNA levels were 

Fig. 4. Film formation of strontium-doped hydroxyapatite (Sr-HA) coating deposited on the surface by microwave. (Created with BioRender.com).

Fig. 5. The degradation and precipita-
tion reaction of bioactive strontium-
doped hydroxyapatite (Sr-HA) regu-
lates local ion concentrations and 
influences surrounding physiological 
processes, including osteoblast dif-
ferentiation. Abbreviations: bMSC, 
bone marrow-derived stromal cell ; Sr, 
strontium. Source: Wan et al., 2020. 
Licensed under CC BY.

increased by 50% after Sr-Ran 
(1 mM) administration (Bren-
nan et al., 2009). Additionally, Sr 
promotes bone matrix synthesis 
(Barbara et al., 2004). Frasnelli 
observed that the cultures of 
rat skull osteoblasts exposed 
to Sr-Ran showed an increased 
synthesis of collagen Ⅰ, a marker 
of osteoblast differentiation (Fra-
snelli et al., 2017).
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Fig. 6.  Schematic diagram of influence of strontium (Sr) administration on osteo-
blasts and osteoclasts and their crosstalk. Source: Borciani et al., 2022. Licensed 
under CC BY 4.0.

Effects of Sr on osteoclasts
Osteoclasts are specialized cells within the bone tissue respon-

sible for bone resorption or the breakdown of bone matrix. They 
play a crucial role in the dynamic process of bone remodeling, 
which involves the continuous removal of old bone tissue and the 
formation of new bone. Osteoclasts achieve bone resorption by 
secreting enzymes and acids that dissolve the mineralized matrix, 
making room for the subsequent action of bone-forming cells like 
osteoblasts.

Studies have shown that Sr promotes osteoclast apoptosis, 
inhibiting their proliferation and differentiation, thereby reducing 
bone resorption (Bonnelye et al., 2008). Owing to their similar 
atomic and ionic properties, both Ca and Sr are agonists of CaSR 
(Luo et al., 2018). Sr probably acts on CaSR to affect the apoptosis 
of mature osteoclasts (Fig. 6) (Neves et al., 2017; Borciani et al., 
2022). Furthermore, Sr regulates inflammatory states to promote 
the osteogenesis of BMSCs and accelerate the inhibition of mac-
rophage RAW264.7 differentiation (Li et al., 2016). In another study, 
consistent with in vitro results, Capuccini proved that the activity 
and differentiation of MG-63 were increased and the differentia-
tion of osteoclasts was inhibited by Sr (Capuccini et al., 2008), 
confirming that Sr incorporation reduced the immune response to 
the material, thereby promoting bone regeneration in vitro (Lee et 
al., 2021). Additionally, Sr reduces the levels of carbonic anhydrase 
II and glass agglutinin receptors in osteoclasts, thereby inhibiting 
cell differentiation and reducing osteoclast resorption by up to 66% 
(Baron and Tsouderos, 2002). The above studies suggest that Sr 
promotes osteogenesis.

				  
Effects of Sr-HA on osteogenesis

The chemical and physical properties of Sr and Ca are similar; 
however, Sr has a larger ionic radius than Ca (112 vs. 99 pm). The 
partial substitution of Ca by Sr results in higher solubility com-
pared with solubility in the presence of Sr-free HA owning to unit 
cell enlargement (Wan et al., 2020). Thus, Sr binds to hyaluronic 

acid by adsorption on mineral surfaces. Moreover, the surface of 
Sr-HA is active and biodegradable, which forms bone-like apatite 
on its surface because of continuous dissolution and precipita-
tion (Kołodziejska et al., 2021). Osteogenesis, the highly regulated 
process of bone formation, is a complex and crucial aspect of the 
skeletal system's development and maintenance. It involves the 
intricate interplay of various cellular components, including osteo-
blasts and osteoclasts, as well as the deposition and resorption 
of bone matrix. Many studies have shown that, compared with 
HA, Sr-HA promotes the osteogenesis of BMSCs, reduces the 
bone-healing period, and enhances implant bone fusion (Table 2). 
Furthermore, Sr concentration in the range of 3%–7% stimulates 
osteoblast activity and differentiation, and the 1% Sr concentration 
affects osteoblast proliferation (Boanini et al., 2011). These results 
imply that the doping of the trace element Sr promotes osteoblast 
activity and differentiation, whereas it inhibits osteoclast differen-
tiation, exerting a potential positive effect in vivo (Gu et al., 2013).

		
Effects of Sr and Sr-HA on blood vessels

Pro-vascularization function of bone repairing biomaterials
Fracture healing is a gradual process of restoring normal bone 

form and function. It is important to realize that in addition to the 
development of new bones, the regeneration of bones involves 
blood vessel remodeling, implying that cells in new bone tissues 
require nutrients and excrete waste materials via blood vessels; 
in other words, the ideal bone tissue material should exhibit the 
function of pro-vascularization (Mao et al., 2009). The endothelial 
cells are pivotal in angiogenesis; therefore, the prerequisite for 
biomaterial graft vascularization is good affinity and compatibility 
with endothelial cells (Chen et al., 2006). Angiogenesis is mainly 
affected by vascularizing growth factors, and among all known 
members of vascular endothelial and angiogenic growth factors, 
vascular endothelial growth factor (VEGF) is the most specific 
pro-angiogenic factor, which plays a central regulatory role in 

physiological and pathological angiogenesis (Hirschi 
and D’Amore, 1997).

Notably, biomaterials are widely used in the treatment 
of bone defects and bone regeneration, where immune 
modulation, especially the abatement of inflammation, 
and the pro-vascularizing effect of biomaterials are crucial, 
where macrophages and neutrophils have a key role in the 
process of tissue-engineered angiogenesis. It is widely 
accepted that M2 macrophages are associated with 
promoting angiogenesis, while M1 macrophages have a 
comparatively weaker effect on angiogenesis (Wang et 
al., 2017). Li et al., (Li et al., 2021) prepared Sr-HA nano-
fibrous gelatin scaffolds to study Sr-mediated regulation 
of neutrophil polarization and subsequent effects on 
angiogenesis and macrophage polarization. Sr-HA-doped 
gelatin scaffolds released by Sr were found to polarize 
neutrophils to an N2 phenotype and act on subsequent 
macrophages and effector cells, thereby promoting 
angiogenesis and tissue regeneration. Liu et al., (Liu et 
al., 2023) summarized the mechanisms associated with 
Sr in bone regeneration (Fig. 7): Sr induces macrophage 
differentiation and promotes vascular regeneration.

Mature osteoblasts and endothelial cells can express 
VEGF and basic fibroblast growth factor (bFGF). Sr-HA 
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signaling increases VEGF and bFGF levels, which play a crucial role 
in the vascularization of the material. VEGF promotes blood vessel 
development by inducing endothelial cell proliferation and partici-
pates in bone development via pro-angiogenesis. Furthermore, it is 
involved in bone formation and metabolism as a paracrine factor. 
BFGF promotes the proliferation and differentiation of as well as 
protein synthesis in its own and surrounding cells in autocrine 
and paracrine ways (Hu and Olsen, 2016). Therefore, Sr-HA with 
pro-vascularization function can be used as a potential material, 
providing a new idea to solve the problem associated with vascu-
larization in bone tissue engineering.

			 
The role of Sr and Sr-HA in vascularization

It has been reported that bioactive ions released by some bone 
repair materials have an important role in angiogenesis during bone 
regeneration. We also found that both Sr and Sr-doped materials 
have an effect on angiogenesis in bone defects or osteoporotic bone 
regeneration. Mao et al., (Mao et al., 2017) investigated the role of 
Sr ions, as well as other ions, in bioceramic materials, and showed 
that Sr ions enhance angiogenesis and inhibit osteoblast formation. 

Liu et al., (Liu et al., 2021) selected strontium-substituted calcium 
silicate (Sr-CS) in their study and systematically investigated the 
biological functions of BMSCs-derived exosomes after Sr-CS 
stimulation. The results showed that Sr-CS significantly promoted 
in vitro angiogenesis of human umbilical vein endothelial cells. HA 
has been found to be biologically active and biocompatible under 
both in vitro and in vivo conditions, which is an advantageous 
material for bone repair (Ramesh et al., 2018). Thus, investigating 
the role of HA in vascularization and related mechanisms is es-
sential. Sr addition into HA can improve the osteogenic capability 
of HA. With the excellent biocompatibility and osteoconductivity 
of HA, whereas Sr exhibits osteoinductive properties (Yedekçi et 
al., 2021); therefore, doping Sr greatly improves the osteoinduc-
tive characteristics of Sr-HA. The early development of several 
blood vessels at the implantation site of Sr-doped biological tis-
sue engineering materials increases local nutrient supply and ion 
exchange, facilitates material degradation, and draws osteoblasts 
from the blood circulation to initiate osteogenesis. Cui et al., (Cui 
et al., 2022) prepared a novel biomimetic bone scaffold containing 
decellularized small intestinal submucosal matrix (SIS-ECM) and 

Advances on Sr-HA Effects on Osteogenesis Reference

Biomimetic mineralized Sr-HA bone defect repair on porous polylactic acid 
scaffolds

Micro-computed tomography (micro-CT) results revealed that Sr-HA /PLLA porous scaffolds 
could form more new bone tissues. (Ge et al., 2018)

Application of Sr-HA bioactive bone cement in hip arthroplasty Sr-HA bioactive bone cement displayed good bioactivity in the goat model of improved hip 
arthroplasty. (Ni et al., 2006)

Strontium instead of calcium sulfate hydroxyapatite scaffold promotes bone 
regeneration

Pre-BMSCs, Sr-CSH /HA complex extraction significantly increased cell migration, upregulat-
ed the expression of osteogenic marker genes and increased the area of mineralized nodules. (Chang et al., 2020)

Sr-HA promotes osteogenesis on polypropylene fumarate nanocomposite 
scaffold

Sr-HA scaffold was superior to the normal groups in supporting the adhesion, proliferation, and 
differentiation of MC3T3-E1 cells. (Li et al., 2019)

Osteogenesis of Sr-HA coating on bone ceramic surface in vitro and in vivo The area ratio of new bone in the Sr10-TBC group (10 mol% Sr2+ in apatite coating) was 
significantly higher than that in the normal group. (Li et al., 2017)

3D printing Sr-HA for repairing rabbit skull defects Sr-HA had better osteogenic ability and stimulated much more new bone formation within 12 
weeks. (Luo et al., 2018)

Sr-HA scaffolds prepared by the SPS technique The material effectively repaired bone defects and displayed good biodegradable properties. (Hu et al., 2020)

Sr-HA-graft-Poly(γ-benzyl-l-glutamate) nanocomposite microcarriers Controlled Sr2+ release accelerated bone formation and promoted the repair of bone non-
union. (Gao et al., 2017)

Synthesis of hydroxyapatite co-doped with trace elements Si and Sr
The measurement of osteoblast adhesion and proliferation indicated that, when compared 
with undoped HA, the osteoblast proliferation ability of Si HA and Si + Sr HA was increased by 
approximately 1.3 times and 1.8 times, respectively.

(Gao et al., 2016)

Effect of Sr-HA coating on bone bonding of implants in low bone mass rats This finding revealed that 20% strontium coating had the best implant bone integration perfor-
mance among the tested coatings of osteoporosis rats. (Tao et al., 2016)

Effect of Sr incorporation into HA on osteoblasts in vitro This study revealed that the incorporation of Sr in HA ceramics enhanced osteoblast differenti-
ation and mineralization. (Ni et al., 2011)

Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on Sr-
doped nanohydroxyapatite-coated titanium surfaces

The Sr-HA coating prepared by electrochemical deposition significantly enhanced the adhe-
sion, spreading, and alkaline phosphatase activity of Sr-HA. (Jiang et al., 2015)

Response of osteoprotective cells to Sr-containing HA ceramics The results revealed that the presence of Sr stimulated the differentiation of OPC1 cells and 
increased the expression of ALP and OPN. (Xue et al., 2010)

In vivo cancellous bone reconstruction with Sr-HA bioactive bone cement Sr-HA forms a thick osteoid layer on the surface of bone cement, osteoblasts form along the 
bone and guide along the surface of bone cement, reflecting the stimulation of Sr-HA. (Wong et al., 2004)

A novel injectable Sr-HA bone cement Sr-HA bone cement slightly promoted the osteoblastic differentiation of MC3T3 cells, suggest-
ing that Sr-HA bone cement could promote its combination with the surrounding bone. (Dai et al., 2021a)

Incorporation of Sr into biomimetic carbonated calcium-deficient HA-coated 
carbon cloth: biocompatibility with human primary osteoblasts

The materials displayed a strong affinity with human primary osteoblasts, the incorporation of 
Sr in the carbonated calcium-deficient HA phase structure had a beneficial role in cell prolif-
eration.

(Olivier et al., 2020)

Sr substitution for HA promotes the maturation of human osteoblasts
Qualitative evaluation using primary human osteoblasts exposed to Sr-HA for 28 days showed 
that, compared with HA, the presence of Sr directly promoted osteoblasts to mature into 
osteoblasts in vitro.

(Stipniece et al., 2021)

Synthesis and characterization of Sr-HA nanoparticles for bone regeneration Sr-HA nanoparticles may be used to transport Sr to bone tissues and promote its regeneration. (Frasnelli et al., 2017)

Sr sintered calcium sulfate bone graft promotes osteogenesis in a rat femoral 
defect model

The concentration of Sr2+ below 10-4M had a positive effect on the osteoblastic differentiation 
of MC3T3E1 cells. (Ming-Kai et al., 2022)

Table 2

Studies on the osteogenic effects of strontium-doped hydroxyapatite (Sr-HA)
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Sr2+/Fe3+ co-doped hydroxyapatite (SrFeHA), and a series of in 
vitro and in vivo experiments were performed to reveal that the 
composites had sufficiently strong vasculogenic properties, and 
these positive results confirmed that the incorporation of Sr-HA 
enhanced the angiogenic effect. The incorporation of 10 mol% 
of Sr-HA significantly promoted angiogenesis by promoting cell 
proliferation, migration and angiogenic differentiation.

It was found that granular Sr-HA was effective in promoting 
the formation of bone tissue and blood vessels. Bai et al., (Bai et 
al., 2018) deposited Sr-HA nanostructures onto the titanium foil 
surface, changed its morphology (from granular to short rods) by 
adjusting heating time, and verified its osteogenic and angiogenic 
effects in vitro and in vivo. The results showed that Sr in the 1% Sr-
doped Ca polyphosphate material degradation solution remarkably 
promoted the secretion of the vascularization factor matrix metal-
loproteinase 2, a Zn-containing protease that degrades extracellular 
matrix components and the basement membrane and is a crucial 
pro-angiogenic factor that strongly promotes the outgrowth of new 
capillaries to form vascular networks. In terms of osteogenesis 
and angiogenesis can be found, Sr-HA is full of great potential in 
bone repair materials and may become a promising alternative for 
new bone tissue engineering.

			 
Conclusions

Herein, we systematically review Sr-HA preparation and provide 
insights into the effects of implanted Sr-HA and Sr on osteogenesis 
and angiogenesis. Among the four preparation methods mentioned, 
the chemical precipitation method yields more efficient and stable 
materials; thus, it is the most widely used method. Additionally, Sr 
promotes osteogenesis by inhibiting osteoclast differentiation and 
promoting osteoblast differentiation. Hence, a better osteogenic 
effect can be achieved by adding Sr to HA. The formation and 

reconstruction of blood vessels play a vital role in bone healing. 
Sr-HA increases VEGF and BFGF levels noticeably; thus, Sr-HA can 
be used as a potent pro-angiogenic material. However, the involve-
ment of inflammation and angiogenesis in bone healing leads to 
the complex mechanism of Sr-HA-mediated osteogenesis. There-
fore, the specific osteogenic mechanism of Sr-HA needs further 
elucidation to maximize the effect of HA and Sr on osteogenesis.
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