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Introduction

Centralto brain development in vertebrates is the generation of
extremely complicated neuronal morphologies, characterized by
the presence and arborization of long cytoplasmic processes
(neurites), referred to as axons and dendrites, which eventually
form synaptic contacts (Peters et al., 1976). Microtubules are
cytoskeletal elements consisting of polymers of a, B-tubulin
heterodimers whose assembly plays an essential role in the
formation and maturation ofaxons and dendrites (Matus, 1988;
Mitchison and Kirschner, 1988; Avila, 1990, 1991; Ginzburg,
1991).

Microtubules are present in all eukaryotic cell types, being
involved in the regulation of cell shape, in the intracellular distribu-
tion oforganellesandincell division. However, they are much more
abundant in neurons, where they promote the growth and induce
the polarity ofaxons and dendrites (Matus, 1988; Mitchison and
Kirschner, 1988; Avila, 1990, 1991; Tucker, 1990; Ginzburg,
1991). Thus, both axons and dendrites shrink back to the cell body,
losing their internal organization after treatment of cultured neu-
rons with microtubule-depolymerizing drugs (Seeds et al., 1970;
Yamada et al., 1970; Matus et a/., 1986; Matus, 1988). A similar
effect is observed when tubulin expression is blocked by specific
anti-sense oligonucleotides (Teichmann-Weinberg et al" 1988).

The occurrence of severe microtubule dysfunction in some
neurodegenerative disorders including Alzheimer's disease also
emphasizes the importance of microtubules for normal neuronal
function (Matsuyama and Jarvik, 1989).

Microtubules are organized in long bundles within axons and
dendrites from mature neurons (Peters et al., 1976; Baas et al.,
1988, 1989). It is thought that microtubule bundling results from
microtubule stabilization (Lee and Brandt, 1992) and, indeed,
neuronal microtubules are more resistant to depolymerization than
non-neuronal microtubules (Seitz-Tutter et al" 1988; Lim et al.,

1989). As the neuronal-specific organization of microtubules may
depend on their high degree of stabilization, a great deal of
attention has been paid tothe study of factors controlling microtubule
dynamics in developing and mature neurons.

Role of microtubule-associated proteins in the regula-
tion of microtubule dynamics

The in vitro dynamics of microtubules has been thoroughly
studied for the last decade with a focus on possible regulatory
factors (Kirschner and Mitchison 1986; Avila, 1990; Caplow, 1992).
Among these factors, there is a group of proteins that bind to tubulin
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in in vitro microtubule polymerization assays and are therefore
referred to as microtubuie-associated proteins or MAPs (Sloboda
et al., 1975). Four major families of MAPs have been described:
MAP 1 proteins (Vallee, 1990), MAP2 proteins (Murphy et al.,
1977), MAP3/MAP4 proteins (Olmsted, 1991) and tau proteins
(Cleveland et al., 1977). Initially isoiated from mammalian brains,
these MAPs have also been found in other vertebrate organisms
(Tucker et al., 1988; Tucker, 1990). Microtubule-associated pro-
teins are also present in invertebrates, although they have not been
characterized in detail. All, except MAP3/MAP4 proteins, are
predominantly found in neurons, and are thought to control
microtubule dynamics in vivo.

There is a major group of microtubule-interacting proteins that
have ATPase activity and transiently bind to tubulin. These «mo-
tor» proteins are involved in the transport of organelles along
microtubules. As these proteins do not show a stable association
with tubulin, they will not be considered as MAPs in this review.

A theoretical mechanism to explain the dynamics of microtubule
assembly-disassembly has been suggested by Mitchison and
Kirschner in their «dynamic instability" model (Mitchison and
Kirschner, 1984; Kirschner and Mitchison, 1986). This model
assumes that unpolymerized tubulin binds GTP and GTP-bound
tubulin has the capacity to polymerize into microtubules (Carlier,
1982). Once tubulin is bound to the polymer, the GTP on tubulin is
hydrolyzed to GDP. When the ratio GDP-tubulin: GTP-tubulin at a
microtubule end reaches a certain threshold, the microtubule
polymer start to rapidly depolymerize (an event known as «catas-
trophe«). After this «catastrophe«, there is the possibility that some
microtubules may incorporate GTP-bound tubulin back and, con-
sequently, stop depolymerizing, thus becoming «rescued«. Also,
depolymerized GDP-tubulin can interchange GDP for GTP, yield-
ing GTP-tubulin that may polymerize into new microtubules again.

Whereas this model may account for the dynamic properties of
microtubules assembled from purified tubulin in vitro (Mitchison
and Kirschner, 1984), some refinement is required to understand
the behavior of microtubules directly observed in living cells after
microinjection of fluorescently-Iabeled tubulin (Cassimeris et a/.,
1988; Walker et a/., 1988). in general, microtubules are less
dynamic in vivo than they are in vitro. Furthermore, there are
important differences in the behavior of microtubules in distinct cell
types (Pepperkok et al" 1990; Shelden and Wadsworth, 1993).
Particularly, neuronal microtubules seem to be less dynamic than
microtubules in non-neural cells; and this microtubule stabilization
is progressively attained during the development and maturation of
axons and dendrites (Okabe and Hirakawa, 1988; Seitz-Tutter et
al., 1988; Lim et al., 1989; Baas et al., 1991).

These distinctive properties might arise from the presence of
specific MAPs, which are notably abundant in neurons (Matus,
1988; Tucker, 1990). Indeed, in vitro studies have demonstrated
that the addition of neuronal MAPs to purified tubulin leads to a
decreased dynamics of the resulting microtubules, which is mainly
due to a decrease in the frequency of «catastrophe" and an
increase in the frequency of «rescue« events (Pryer et al., 1992).
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Fig, 1. Model for the role of MAPs in favoring the interaction of B.tubulin subunit with GTP. The binding of MAPs to the C-terminal region of the

B tubulin subunit interferes with the intramolecular interaction of that domain wlrh the GTP-binding domain. Thus, GTP binding to B tubu/in is facilirated.

Furthermore, the microinjection of certain neuronal-specific MAPs
into non-neural cells (Dubrin and Kirschner, 1986) and the
transfection of these cells with cloned cDNAs coding for certain
neuronal MAPs (Kanai etal., 1989, 1992; Knops etal., 1991 ;Chen
el al., 1992; Lee and Rook, 1992; Takemura et al., 1992; Weisshaar
el al" 1992; Edson et al" 1993; Umeyama et al" 1993) also results

in the stabilization and bundling of the cellular microtubules in situ.
However the molecular mechanisms responsible tor the MAP-
stimulated microtubule stabilization are still unclear. One possibil-
ity is that the binding of MAPs to the microtubule lattice would
simply diminish the rate of loss of tubulin from the polymer.
Additionally, the binding of MAPs may increase the affinity of
tubulin for GTP (Hamel et al., 1983). As MAPs bind to the carboxy
terminal region of tubulin subunits (Serrano et al., 1984a,b, 1985),
and this domain of the tubulin molecule is also involved in an
intramolecular interaction with the GTP-binding site (Padilla et al..
1993), the association of MAPs with tubulin might relieve any
restraint for GTP binding to tubulin as indicated in Fig. 1.

MAPs may also influence other properties of the microtubule
cytoskeleton. The presence of several closely spaced tubulin-
binding motifs on MAP molecules (see below) may link together
neighboring tubulin dimers on the microtubule lattice, thus confer-
ring stiffness to the microtubules (Edson et al., 1993). As MAPs are
long fibrous molecules that project out of the microtubule surface,
MAPs may function as «spacer.. molecules controling the distance
between microtubules in bundles (Chen et al., 1992; Lee and
Brandt, 1992). Finally, MAPs may also serve as anchors for a
variety of cytoplasmic proteins. including several protein kinases
(Theurkauf and Vallee, 1983; Obar et al.. 1989; Rubino el al., 1989;
Serrano et al" 1989; Ookata et al., 1993) and other cytoskeletal
proteins (Leterrier etal" 1982; Selden and Pollard, 1983; Hirokawa

et al., 1988).
Thus, the expression of specific sets of MAPs along neuronal

development may partly determine the organization and properties
of the microtubule cytoskeleton at distinct developmental stages.
In fact, the inhibition of the expression of certain MAPs in cultured
neurons by treatments with antisense oligonucleotides blocks
neuronal morphogenesis at specific stages (Caceres and Kosik,
1990; Caceres el al., 1991; Dinsmore and Solomon, 1991;
Hanemaaijer and Ginzburg, 1991; Brugg et al" 1993). Conse-
quently, there is a great interest in the study of the detailed
molecular mechanisms controlling neuronal development in which
MAPs are implicated.

MAPs are actually a very heterogeneous group of proteins,
individual members showing developmental stage-specific ex-
pression as well as a subcellular-specific compartmentalization
(Matus, 1988; Tucker, 1990). Additionally, MAP functionality may
be modulatedby post-translationalmodifications,mainly through
phosphorylation and dephosphorylation (Avila and Diaz-Nido,

1991). We will refer to these issues in the following sections, where
we will briefly review the MAPs best characterized because of their
abundance in mammalian brain.

MAP1 proteins

The MAP1 protein family consists of two distinct but related
proteins, MAP 1A and MAP 1B (Schoenfeld et al" 1989; Garner et

al" 1990; Langkopf etal., 1992). MAP 1B (Bloom elal., 1985) is also
known as MAP1.2 (Greene el al., 1983; Aletta et al" 1988), MAPI X
(Binder et al., 1984; Calvert and Anderton, 1985) and MAP5
(Riederer el al., 1986). MAP1A has a molecular mass of 299,000
whereas MAP1 B has a molecular mass of 255,000, as calculated
from their respective amino acid sequences (Noble et al., 1989;
Langkopf et al. 1992). However, they show higher apparent mo-
lecular masses after denaturing gel electrophoresis (350 and 320
kDa). These MAPs are encoded by two distinct genes (Garner et
al., 1990), but they show extensive regional amino acid similarities
including a positively-charged segment which is close to the amino
terminus and contains multiple repeats of a (Lys/Arg) (Lys/Arg)
(Glu/Asp) motif (Noble el al" 1989; Langkopf el al" 1992). These
repeats appear to be involved in microtubule-binding (Noble et al.,
1989), and might be general tubulin.binding motifs conserved in
distinct MAPs from different cell types and organisms. Indeed, they
have been found even in one of the major tubulin-binding proteins
from yeast (Jiang el al., 1993). However, they are not present in
other classes of MAPs (see below).

There are three low molecular weight proteins referred to as light
chains: LCI (34 kDa), LC2 (30 kDa) and LC3 (19 kDa), associated
with the microtubule-binding domains of both MAPI A and MAP 1B
(Vallee and Davis, 1983; Schoenfeld el al., 1989). Interestingly,
MAP1Aand LC2 (as well as MAP1B and LC1) are coded by single
mRNAs which give rise to pre-MAP1NLC2 and pre-MAP 1B/LC1
polyprotein precursors which are proteolytically processed
(Hammarback el al., 1991; Langkopf el al., 1992).

Although these MAPs. or related proteins, are widely distributed
in different cell types, they are mainly found in neurons (Vallee et
al., 1986; Diaz-Nido and Avila, 1989; Tucker el al., 1989). The
expression of these proteins in the mammalian brain is under
strong developmental control. MAP 1B has been shown to be the
first MAP which is expressed in neurons in silu(Tucker et al" 1988,
1989; Tucker, 1990). The expression of MAP 1B is down-regulated
during brain development (Binder et al" 1984; Bloom et al., 1985;
Riederer et al., 1986; Tucker el al., 1989; Garner el al" 1990),

whereas the expression of MAP 1A is up-regulated (Binder et

al" 1984; Tucker et al" 1989; Garner el at" 1990).
Immunohistochemical analyses have shown that MAPI B is highly
concentrated in developing neurons, particularly within their grow-
ing axons, and exhibits a more moderate expression both in axons
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and dendrites of mature neutons (Riederer et al., 1986; Schoenteld
et al.. 1989). MAP1 A is mainly abundant in dendrites of mature
neurons (Bloom et al., 1984; Huber and Matus. 1984; Shiomura
and Hirokawa, 1987; Schoenfeld et al., 1989). In view of these data,
it is tempting to speculate that MAP1 Bis important in neurite growth
in the developing brain and in neurite plasticity in the adult brain,
whereas MAP1 A may be required for dendrite maintenance in the
adult brain. An essential role for MAP1 B in the inifiation of neurite
growth is supported by recent experiments using antisense
oligonucleotides which inhibit MAP1 B expression in cultured
neuronal-like cells (Brugg et al.. 1993). Likewise, an up.regulation
of MAP1 B has been correlated with neuritic regeneration in adult
retinal explant cultures (Bates et al., 1993).

MAP1 phosphorylation

Both MAP1 A and MAP1 B are extensively phosphorylated in the
living rat brain (Diaz-Nido et al., 1990). Phosphorylation of MAP1 B
has been more thoroughly studied, as it occurs during neurite
growth in a variety of cell lines of neuronal origin (Aletta et al., 1988;
Diaz-Nido et al.. 1988).

The existence of at least two major modes ot MAP1 B
phosphorylation which can be distinguished by the use of different
antibodies to phosphorylation-sensitive epitopes has been re-
cently described (Ulloa et al.. 1993a,b,c). The mode I of MAP1 B
phosphorylation induces an important upward shift in the
electrophoretic mobility of the protein and might be catalyzed by
proline-directed protein kinases (cyclin-dependent kinases andlor
MAP kinases), whereas the mode II of MAP1 B phosphoryiation
hardly modifies the electrophoretic mobility of the protein and is
presumably catalyzed by casein kinase II (Ulloa et al., 1993a,c).
Mode I-phosphorylated sites on MAP1 B can be readily
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Fig. 2. Scheme for possible changes in the phosphorylation state of
MAP1B during neuronal development During neurite sprouting, there
is an increase in the level of phosphorylation of MAP1 8 which may be due
to casein kinase II (CK II) and proline directed protein kinase (PDPKJ.
Phosphorylation of MAP1B by PDPK is axonal-specific and notably de-
creases after axonal maturation. Phosphorylation of MAP1S by CK 1/
remains in mature neurons.

dephosphorylated by calcineurin (protein phosphatase 2B) and
protein phosphatase 2A. whereas mode II-phosphorylated sites
are dephosphorylated by protein phosphatases 2A and 1 (Ulloa et
al., 1993c).

Interestingly, these two modes of MAP1 B phosphorylation are
independently regulated during brain development and show a
differential subcellular distribution. The mode I of MAP1 B
phosphorylation strongly diminishes during development in most
adult brain regions (Viereck et al., 1989; Fischer and Romano-
Clarke, 1990; Ulloa etal., 1993b) (Fig. 2). Mode I-phosphorylated
MAP1 B is localized to the distal growing segments of developing
axons, and axonal maturation is accompanied by dephosphorylation
(Mansfield et al., 1992; Gordon-Wecks et al.. 1993; Riederer et al.,
1993; Ulloa et al., 1994). No dephosphorylation of mode 1-
phosphorylated MAP1 B occurs in the olfactory system, where
there is a persistent growth ofaxons from sensory neurons of the
olfactory epithelium. This supports the view that mode 1-
phosphorylated MAP1 B can be considered as a marker for active
axonal growth. In contrast, the mode II of MAP1 B phosphorylation
is maintained in the adult brain (Ulloa et al., 1993b) and is present
both in axons and dendrites (Ulloa et al., 1994).

Evidence obtained from neuroblastoma cells suggests that
phosphorylation by casein kinase II at mode II siteson MAP1 B may
favor its binding to microtubule and may be essential for neurite
growth (Diaz-Nido et al.. 1988; Ulloa et al., 1993c).

The functional consequences of the mode I of MAP1 B
phosphorylation are not yet understood, although it can be specu-
lated that this specific mode of phosphorylation of MAP1 B might
contribute to the dynamic configuration ot microtubules which has
been observed in growing axon terminals. The dephosphorylation
of mode I sites on MAP1 B may therefore lead to more stabilized
and tightly packed microtubule bundles during axonal maturation.

it is interesting to note the presence of hyperphosphorylated
MAP1 B (particularly at mode I sites) associated with dystrophic
neurites and neurofibrillary tangles within the brains of patients with
Alzheimer's disease (Hasegawa et al., 1990). This fact may be
correlated with the aberrant neurite growth characteristic of this
disorder (lhara, 1988; Masliah et al., 1991).

Other brain MAPs

MAP2, MAP3/MAP4 and tau proteins are protein families shar-
ing the presence of a carboxy-terminal microtubule-binding do-
main consisting of a proline-rich cationic region followed by three
or four impertect tandem repeats containing homologous 18-
amino-acid motifs which are completely different from those present
in MAP1 proteins (Lee etal_, 1988; Lewis etal., 1988; Kindleretal.,
1990; Aizawa et al., 1991; Goedert et al" 1991; West et al., 1991).

MAP2, MAP31MAP4 and tau are each encoded by a single-copy
gene, but considerable heterogeneity is generated by alternative
splicing of primary transcripts.

MAP2

There are several forms of MAP2 that arise from an alternative
splicing which is under developmental control in neurons. In this
way, there is a high molecular weight protein known as MAP2B
(1828 amino acids, with an apparent molecular mass of 270,000 by
denaturing gel electrophoresis; Lewis et al., 1988) and a smaller
form referred to as MAP2C (467 amino acids, with an apparent
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molecular mass of 70,000 by denaturing gel electrophoresis;
Kindler el al., 1990). MAP2C consists of amino-terminal and
carboxy-terminal domains of high molecular weight MAP2 joined
together and lacking the 1372-amino-acid intervening sequence.
The amino-terminal domain contains a binding site for the regula-
tory subunit of cyclic AMP-dependent protein kinase, whereas the
carboxy-terminal segment contains the microtubule-binding do-
main (Obar et al., 1989; Rubino el al., 1989; Kindler el al., 1990).
Three tubulin-binding motifs have been found in MAP2B and
MAP2C. Recently, a new MAP2 form named MAP2D has been
described. This form contains four repeats of the tubulin binding
motif and is abundant in glial cells (Doll el al., 1993).

MAP2C is expressed in the developing brain and it is strongly
down-regulated during brain maturation, whereas high molecular
weight MAP2B is expressed in both developing and adult brain.
Additionally, a high molecular weight form of MAP2 with a slower
electrophoretic mobility (MAP2A) appears only after brain matura-
tion (Matus, 1988; Nunez, 1988; Tucker, 1990). MAP2C appears
in postmitotic neuroblasts and has a widespread distribution, being
present in neuronal cell bodies, dendrites and axons as well as in
glial cells (Tucker, 1990; Charriere-Bertrand et al., 1991). In
contrast, high molecular weight MAP2 is a neuronal-specific pro-
tein selectively localized in dendrites and neuronal cell bodies
(Caceres el al., 1984; De Camilli el al., 1984; Huber and Matus,
1984; Tucker, 1990; Charriere-Bertand el al., 1991). The specific
compartmentalization of high molecular weight MAP2 into dendrites
may be due to the selective transport of the corresponding mRNA
into dendrites (Garner et al., 1988).

The essential role of MAP2 in the growth of dendrite-like
processes has been demonstrated using antisense oligonucleotides

in certain cultured neuronal-like cells (Dinsmore and Solomon,
1991).
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Fig. 3. Hypothetical model to explain tau aggregation into PHF
Whereas a certain type of phosphorylation (I)may allow the association of
tau protein with microtubules, another type of phosphorylation (/1)may
block tau binding to micro tubules. Hyperphosphorylated tau may thus
become accumulated in the cytosol. Further modification of tau protein on
lysine residues byglycation may lead to aggregation of hyperphosphorylated

tau into PHF. Proteolytic cleavage of tau protein and other still-unknown
tau modifications may also result in tau aggregation into PHF.

In addition to its association with microtubules, MAP2 is co-
localized with actin and associated with actin microfilaments,
membrane organelles and the post-synaptic density in dendritic
spines (Caceres el al., 1983; Morales and Fifkova, 1989). In view
of these data, a role for MAP2 in the organization of both dendrite
and dendritic spine cytoskeletons can be expected.

Regulatory factors controlling MAP2 expression remain to be
determined. However, some preliminary evidence emphasizes the
role of neuronal-glial interactions in promoting both MAP2 expres-
sion and dendrite arborization (Chamak et al., 1987).

MAP2 phosphorylation

MAP2 has been identified as one of the preferred in vilro
substrates for cAMP-dependent protein kinase (Sloboda el al.,
1975; Theurkauf and Vallee, 1983), calcium/calmodulin-depend-
ent protein kinase type II (Yamamoto et al., 1983; Schulman,
1984), protein kinase C (Hoshi el al., 1988) and proline-directed
kinases such as MAP kinase (Hoshi el al., 1992) and cdc2 kinase
(Faruki ef al., 1992). MAP2 can be in vitro dephosphorylated by
protein phosphatases 1, 2A(Yamamoto elal., 1988) and calcineurin
(Goto et al., 1985).

Interestingly, current evidence suggests that some of these
phosphorylation and dephosphorylation events may also occur in
vivo (Tsuyama el al., 1987; Diaz-Nido et al., 1990; Brugg and
Matus, 1991; Riederer, 1992; Arias el al., 1993; Diaz-Nido et al.,
1993; Montoro el al., 1993). Highly phosphorylated MAP2 contain-
ing up to 46 phosphates per molecule binds less efficiently to
tubulin than underphosphorylated MAP2 containing up to 16
phosphates per molecule (Tsuyama el al., 1987). However, com-
pletely dephosphorylated MAP2 seems to be the least efficient in
tubulin binding (Brugg and Matus, 1991).
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In vilro studies have shown that extensive phosphorylation ot
MAP2 with puritied protein kinases decreases its binding to tubulin
(Jameson el ai., 1980; Jameson and Caplow, 1981; Murthy and
Flavin 1983; Hoshi el al., 1988, 1992). At least in the cases of
profein kinase C and MAP kinase, this has been correlated with the
phosphorylation of sifes on the microtubule-binding domain of the
MAP2 molecule (Hoshi el ai., 1988, 1992). However, nothing is
known about the protein kinases responsibleforthe phosphorylation
at other sites which can stimulafe the binding of MAP2 to
microtubules (Brugg and Matus, 1991).

A physiological role for MAP2 phosphorylation and
dephosphorylation in triggering cytoskeletal changes in response
to certain neurotransmitters has been suggested. In fact, a rapid
and selective MAP2 dephosphorylation aher activation of NMDA-
type glutamate receptors has been described in rat hippocampus
(Halpain and Greengard, 1990Diez-Guerra and Avila, 1993a;
Montoro el ai., 1993). Hippocampal MAP2 dephosphorylation may
be catalyzed by the calcium/calmodulin-dependent phosphatase
calcineurin (Montoro el al., 1993) and might lead to a stabilization
of the microtubule cytoskeleton (Bigot el al., 1991). On the other
hand, the presence of a high concentration of extracellular potas-
sium, which leads to membrane depolarization, results in an up-
phosphorylation of MAP2 in which protein kinase C may be
implicated (Diaz-Nido el al., 1993). Additionally dendrite arborization
has been correlated with an increase in the phosphorylation of
hippocampal MAP2 in which calcium/calmodulin-dependent pro-
tein kinase may be implicated (Diez-Guerra and Avila, 1993b).

MAP3/MAP4

Similarly to MAP2, there are at least five forms of MAP4
generated by alternative splicing (West el al., 1991). These include
proteins previously identified as MAP3 (Huber and Matus, 1990).

Axonal MAP1B
elongation TAU

Fig. 4. Hypothetical outline of the con-
tribution of MAP modifications to
neuronal morphogenesis. The initiation
of neurite extension IScorrelated with the
phosphorylation of MAP1 B. Phos-
phorylation by a proline-directed protein
kinase (PDPK) appears to occur only in
growing axons. Phosphorylation of
MAP18 by casein kinase II (CK II) may
favor microtubule assembly. Axonal elon-
gation is correlated with the expression of
tau protein. The balance between
microtubule dynamIcs and stabilization
may be controlled by rau phosphorylation

and dephosphorylation. The extension and
arborization of dendrites is correlated wirh
the expression of MAP1A and high mo-
lecular weight MAP2 and with theIr
phosphorylation. One of the putarive

MAP2 kinases is calcium/calmodulin-de-
pendent protein kinase /I (CaMK II)

Dendrite MAP1A
arborization MAP2

In contrast to other MAPs, MAP4 proteins are predominantly
expressed in non-neuronal tissues. In the brain, MAP4 is only
expressed in glial cells and in immature neuroblasts (Bulinski and
Borisy, 1980; Olmsted el al., 1986; Huber and Matus, 1990).

Tau

There are also a large number of tau protein isoforms generated
by alternative splicing of aprimarytranscript (Himmler, 1989; Kosik

el al., 1989; Lee, 1990; Goedert el al., 1991, 1992; Couchie el al.,
1992; Montejo de Garcini el al., 1992). Several tau proteins with
apparent molecular masses ranging from 55,000 to 68,000 (as
determined from denaturing gel electrophoresis) are found in the
central nervous system. Two classes of tau isoforms have been
described. One class containing three tubulin binding motifs and
another containing four motifs. Isoforms containing three tubulin-
binding repeated motifs are predominantly expressed in the devel-
oping brain, whereas isoforms containing four tubulin-binding
repeats are expressed in the adult brain (Kosik el al., 1989; Lee,
1990; Goedert el al., 1991). These latter tau isoforms are the most
efficient in in vitro microtubule binding (Goedert and Jakes, 1990;
Butner and Kirschner, 1991). Additional tau isotorms with an
apparent molecular mass of 110,000 have been identified in the
peripheral nervous system (Georgieff el al., 1991). This high
molecular weight tau contains four repeated motifs in its microtubule-
binding domain, similarly to adult brain tau proteins, but it has an
additional 254-amino-acid insertion in the amino-terminal region of
the molecule (Couchie el al., 1992; Goedert el al., 1992). A
modulatory role of high molecular weight tau in neuritogenesis in
cells of the peripheral nervous systems has been suggested
(Montejo de Garcini et al., 1992; Teng el al., 1993).

In brain, tau proteins are mainly localized to axons (Binder et al.,
1985; Brion el al., 1988), although the presence of some tau



proteins within neuronal cells bodies and dendrites has also been
reported (Papasozomenos and Binder, 1987). The accumulation
of tau proteins (particularly of the adult isoforms) into axons may
partly depend onthe priorsorting of mRNA in the proximal segment
of the axon (Litman et al" 1993).

Interestingly,the selective inhibition of tau protein expression by
treatment of cultured neurons with antisense oligonucleotides
leads to a block in the elongation of axon-like neurites (Caceres
and Kosik, 1990; Caceres et al., 1991; Hanemaaijer and Ginzburg,
1991). Thus, a specific role for tau protein in the microtubule
stabilization which occurs during axonal elongation may be hy-
pothesized.

Tau phosphorylation

Tau proteins are modified in vitro by several protein kinases,
including cyclic AMP-dependent protein kinase (Pierre and Nunez,
1983; Johnson, 1992; Scott et al., 1993a), calcium/calmodulin-
dependent protein kinase II (Yamamoto el al., 1983; Steiner el al.,
1990; Johnson, 1992), protein kinase C (Baudier et al., 1987; Hoshi
et al., 1987; Correas et al" 1992), casein kinase I (Pierre and
Nunez, 1983), casein kinase II (Correas et al., 1992) and proline-
directed protein kinases such as MAP kinases (Drechel et al.,
1992; Drewes el al" 1992; Ledesma et al., 1992), cyclin-dependent
kinases (Ledesma et al., 1992; Mawan-Dewal el al., 1992; Vulliet
et al" 1992; Liu et al., 1993; Scott et al., 1993b), glycogen synthase
kinase-3 (Hanger et al., 1992; Mandelkow et al., 1992) and tau I
and IIprotein kinases (Ishiguro et al., 1992a,b; Arioka et al., 1993).
Recently, the identity of glycogen synthase kinase 3 and tau
protein kinase Ihas been demonstrated (lshiguro et al., 1993) and
tau protein kinase II has been identified as the neural-specific
cyclin-dependent kinase cdk5 (Hellmich et al., 1992; Lew et al.,
1992; Meyerson et al., 1992; Xiong et al., 1992; Hisanaga et al"
1993; Shetty et al., 1993).

Some of the residues modified by these protein kinases have
been identified. A serine residue located downstream of the
repeats in the carboxy terminus of the molecule can be
phosphorylated by calcium/calmodulin-dependent protein kinase
(Steiner et al., 1990) and cyclic AMP-dependent protein kinase
(Scott et al., 1993a). The functional consequences of
phosphorylation at this site are not clear (Drechsel et al., 1992;
Johnson, 1992). Serine residues located on the repeats can be
phosphorylated by protein kinase C (Correas et al" 1992) and
cyclic AMP-dependent protein kinase (Scott et al., 1993a).
Phosphorylationat these residues may decrease the binding of tau
to tubulin (Correas et al., 1992; Johnson, 1992; Scott et al., 1993a).

Severa! serine and threonine residues corresponding to (Serf
Thr)-Pro motifs can be phosphorylated by proline-directed protein
kinases (Drewes et al" 1992; Hanger et al" 1992; Ishiguro et al.,
1992a,b; Ledesma et al., 1992; Mandelkow et al., 1992; Vulliet et
al., 1992; Arioka et al., 1993; Liu et al., 1993; Scott et al., 1993b).
Phosphorylation at some of these sites also decreases the affinity
of tau for tubulin (Drechsel et al., 1992; Gustke et al., 1992), thus
reducing the ability of tau to stabilize microtubules (Drechsei et al.,
1992). This type of phosphorylation may favor microtubule dynam-
ics during axonal growth in developing neurons (Drechsel at aI.,
1992; Arioka et al., 1993; Bramblett et al" 1993; Goedert et al"
1993; Pope et al" 1993). Consequently, the dephosphorylation of
these sites may contribute to microtubule stabilization during
axonal maturation. Both protein phosphatase 2A (Goedert et al.,
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1992a) and calcineurin (Gong et al., 1993) can readily
dephosphorylate these sites in vitro. Accordingly, tau
phosphoryiation by proline-directed kinases has some similarities
to the mode I of MAP1 B phosphorylation discussed above. It is
important to note that the abnormal hyperphosphorylation of tau
proteins at these sites in mature neurons may contribute to the
microtubule dysfunction which is found in certain neurodegenerative
disorders, including Alzheimer's disease (Drewes at al., 1992;
Hanger et al.,1992; Ishiguro et al., 1992a,b; Ledesma et al., 1992;
Mandelkow et al., 1992; Vulliet et al., 1992; Arioka et al., 1993;
Bramblett et al" 1993; Goedert et al., 1993; Liu et al., 1993; Pope
et al" 1993).

Similarly to MAP2, an efficient binding of tau to tubulin appears
to require the presence of some phosphorylated sites on tau
protein (Garcia de Ancos et al., 1993). However, neither the
modified sites nor the protein kinases implicated in promoting
tubulin-binding have been identified yet.

Phosphorylationand dephosphorylationevents at certain sites
on the tau molecule may contribute to the generation of axonal and
dendritic polarity. Thus, some phosphorylated tau isoforms are
mainlylocalized in neuronalcell bodies and dendrites, whereas
other phosphorylated tau isoforms are restricted to axons
(Papasozomenos and Binder, 1987; Garcia de Ancos and Avila,
1993; Pope et al., 1993).

Finally, phosphorylation of tau can also modulate the self-
association and aggregation ot tau (Garcia de Ancos et al., 1993).
Tau aggregation may result in the assembly of the Alzheimer's
disease-specific paired helical filaments (PH F).
Hyperphosphorylated tau is the major PHF component (Grundke-
Iqbal et a/., 1986; Kosick et al., 1986; Nukina and Ihara, 1986;
Wood et al., 1986; Wischick et al., 1987; Ihara et al., 1989; Nieto
et al., 1990; Lee et al., 1991; Gonzalez et al., 1992). However, tau
hyperphosphorylation does not directly result in PHF formation
(Kopke et al" 1993), so an additional tau modification seems to be
required. Recent results suggest that a modification (glycation) in
lysine residues on tau protein may contribute to PH F formation
(Ledesma et al., unpublished observations). Alternative post-
translational modification of tau protein may also lead to tau
aggregation into PHF-like polymers (Montejo de Garcini et ai,
1986, 1988; Montejo de Garcini and Avila, 1987). In particular,
proteolysis may be one of these modifications, as the ability of a tau
fragment containing the tubulin-binding domain to self-associate
into PHF-like polymers at low pH has been described (Crowther et
al., 1992; Wille et al., 1992). A hypothetical model with the putative
post-translational modifications which are required to allow tau
assembly into PHFs is shown in Fig. 3.

Conclusions and perspectives

Current evidence supports the view that neuronal MAPs deter-
mine the microtubule rearrangements underlying neuronal
morphogenesis. This can be achieved through the regulation of the
expression of particular MAP isoforms at specific cell locations and
at distinct developmental stages, as well as through the modifica-
tion of MAPs by phosphorylation and dephosphorylation.

There are, however, several unresolved issues in this respect.
First, it is not clear how subtle structural differences among distinct
MAP isoforms may be responsible fordifferent effects on microtubule
dynamics and organization. The study of simple models such as in
vitro assays using recombinant proteins (Brandt and Lee, 1993)
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and transfection assays of non-neuronal cells (Chen el a/., 1992;
Edson el a/., 1993; Montejo de Garcini el a/., 1993) may be useful
to clarify this point. Second, the molecular tactors controlling the
developmental stage-specific expression of geneseo ding for MAPs,
the alternative splicing of primary transcripts and the subcellular-
specific sorting of the mature mRNAs and proteins are entirely
unknown. Presumably these topics can only be addressed using
either primary cultures of neurons or certain cell lines which exhibit
a high degree of neuronal differentiation (McBurney el a/., 1988;
Tanaka el a/., 1992; Pleasure and Lee, 1993). Finally, much more
research is required to identify all the sites on MAP molecules
which are moditied by phosphorylation/dephosphorylation, to de-
termine the functional consequences of these site-specific modifi-
cations, to identify the protein kinases and phosphatases respon-
sible for these modifications, and to understand the physiological
regulation of these phosphorylation and dephosphorylation events.
These studies require the use of the different systems already
mentioned (recombinant proteins, transfection assays and neuronal
cultures).

Notwithstanding these limitations, available data allow the draw-
ing of a tentative model which may serve as a provisional working
hypothesis (see Fig. 4).

Thus, MAPl B is implicated in the initiation of neurite outgrowth
(Brugg el a/., 1993), which is the first stage of neuronal
morphogenesis. Phosphorylation of MAPl Bis important in control-
ling its function; the mode II of phosphorylation may favor the
association of MAPl B with microtubules (Diaz-Nido et a/., 1988;
Ulloa el a/., 1993c) whereas the mode Iof MAP1Bphosphorylation
might contribute to the specific dynamics of axonal growth (Mansfield
ela/., 1992; Ulloa ela/., 1993b, 1994).

Tau protein seems to be specificallyinvolved in axonal elonga-
tion (Caceres and Kosik, 1990; Caceres el a/., 1991; Hanemaaijer
and Ginzburg, 1991). Phosphorylation of tau protein may consti-
tute an additional mechanism to control the balance between
microtubule dynamics and stabilization in developing axons
(Drechsel ela/., 1992; Arioka ela/., 1993; Bramblett ela/., 1993;
Goedert ela/., 1993; Pope ela/., 1993).

The dephosphorylation of mode I sites on MAPl B (Ulloa el a/.,
1993b, 1994) and of similar sites on tau protein (Arioka el a/., 1993;
Bramblett el a/., 1993; Goedert el a/., 1993; Pope el al., 1993) may
contribute to microtubule stabilization and bundling during axonal
maturation.

Both high molecular weight MAP2 (Caceres el al., 1984; De
Camilli el a/., 1984; Huber and Matus, 1984; Dinsmore and
Solomon, 1991) and MAPl A (Shiomura and Hirokawa, 1987;
Schoenfeld el a/., 1989) may be implicated in the growth and
maturation of dendrites. Likewise, phosphorylation and
dephosphorylation may also be important in modulating the func-
tion of these proteins in dendrites (Diaz-Nido el a/., 1990, 1993;
Diez-Guerra and Avila, 1993a,b; Montoro el a/., 1993).

This hypothetical model scheme of neuronal morphogenesis
emphasizes the major roles performed by phosphorylation and
dephosphorylation of MAPs. Indeed, reversible phosphorylation of
proteins is the best-established molecular mechanism for the rapid
and efficient regulation of intracellular events by extracellular
signals (Fischer and Krebs, 1989; Walaas and Greengard, 1991).
Inthis context, MAPphosphorylation and dephosphorylation may
induce changes in the cytoskeletal organization in response to
those extracellular signals (neurotrophic factors, hormones,
neurotransmitters, neuromodulators, adhesion molecules,

extracellular matrix proteins, extracellular proteases) which control
neuronal morphogenesis through the modulation of the activity of
different proteins kinases and phosphatases (Keegan and
Halegoua, 1993; Lauder, 1993; Wood and Roberts, 1993).

However, cytoskeletal rearrangements should not be consid-
ered restricted to developing neurons. There seems to be a high
degree of neuronal plasticity not only throughout development but
also in the adult brain. Synaptic connections are presumably
capable of modification by activity during the entire life of an
organism. Large-scale rearrangementsof synaptic contacts occur
during development to generate the patterns of connectivity under-
lying the representations of sensory systems in the brain (Montague,
1993). Similar remodelings of synaptic junctions may reflect some
records of learning in the adult brain (Chang and Greenough, 1984;
Greenough and Bailey, 1988; Rose, 1991; Bailey and Kandel,
1993). Cytoskeletal modifications may contribute to such synaptic
changes, which generally involve the distal portions of neurites. A
role for MAPs in synaptic plasticity may theretore be hypothesized.
Indeed, preliminary evidence has shown a correlation between
some modifications in the expression and/or phosphorylation of
MAP2 and certain examples of synaptic plasticity (Aoki and
Siekevitz, 1985; Caceres el a/., 1988; Hendry and Bhandari, 1992;
Montoro el a/., 1993). The study of the MAP modifications related
to synaptic remodeling is a promising area for future research.

It is also important to note that aberrant synaptic plasticity has
been correlated with Alzheimer's disease (Ashtord and Jarvik,
1985; Ihara, 1988; Di Patre, 1991; Masliah el a/., 1991, 1992;
Masliah and Terry, 1993), a neurodegenerative disorder which is
accompanied by an abnormal hyperphosphorylation of some MAPs
including MAPl B and tau (Hasegawa el a/., 1990; Bramblett el a/.,
1993; Goedert el a/., 1993). Itisthus plausiblethatthedisregulation
of the phosphorylation systems controlling MAPs and synaptic
plasticity may lead to neurodegeneration. Some studies with
phosphatase inhibitors are consistent with this possibility (Arias el
a/., 1993). Furthermore, it has been speculated that reduced
expression or abnormally post-translationally modified forms of
some MAPs (MAPl Band MAP2) may affect the ability of dendrites
to maintainand remodel synaptic junctions in certain neurons of
the hippocampal formation in schizophrenic patients (Arnold el a/.,
1991).

In summary, a better understanding of the molecular properties
of MAPs and of their modulation by reversible phosphorylation is
not only relevant to the study of neuronal morphogenesis but may
also provide important insights into the mechanisms of synaptic
plasticity and several neuropathological conditions.

Summary

Neuronal morphogenesis is driven by cytoskeletal changes in
which microtubules playa leading role. A very heterogeneous
group of microtubule-associated proteins (MAPs) seems to control
the dynamics and contribute to the organization of the microtubule
cytoskeleton. Of great importance in this regard is the developmen-
talregulationof the expression of certain MAPs in specific neuronal
compartments. Furthermore, MAP functionality is also modulated
by phosphorylation and dephosphorylation events. A correlation
between the expression and/or phosphorylation of distinct MAPs
and definite stages of neuronal development may be established.
A putative role in synaptic plasticity for MAP modifications similar
to those occurring during development can be anticipated. Inter-



estingly, gross alterations in microtubule-associated proteins are
found in several neuropathologies including Alzheimer's disease.
In this review we focus on recent advances in the understanding of
the molecular properties of major neuronal MAPs which may be
relevant to these issues.
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