doi: 10.1387/ijdb.082700rm

SUPPLEMENTARY MATERIAL

corresponding to:

Expression of the novel gene *Ened* during mouse and *Xenopus* embryonic development

RENATA MESZAROS, INA STRATE, EDGAR M. PERA and MADELEINE DURBEEJ*

Α

	1	10	20	30	40	50	60	70	80	90	100	110	120	130
Mouse Human Horse Opossum Chicken		IKPGQLINH IKPGQLINH IKPGQLINH	FICSLCVPRV0 FVCSLCIPRV1	RKLWSSRRPR CKLWSSRRPR LRLWSSRRPR	TRRNLLLGTA TRRNLLLGTA TRRNLLLGTA	C <mark>AI</mark> YLGFLVS0 CAIYLGFLVS0 CALYLGFLVS0	QVGRASLQHG QVGRASLQHR QVGHVSLQHR	QATORGPPNG- QAAEKGPHRS- RAAEKGPRQS- RAPQKGPHRN- Ggy <mark>e</mark> tiss R SI	-RDTAEPSFPI -RDTAEASFPI -LDAAGTSFL	EIPLDGTLAPI EIPLDGTLAPI ELPLDGTLAPI	PESQGN PESQGN PESQGN	IGSTLQPNVVY Igttlqpnvvy Igttlqpnvvy	ITLRSKRSKP ITLRSKRSKP ITLRSKRSKP	ANIRGT ANIRGT ANIRGT
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
House Hunan Horse Opossun Chicken	VKPKRRKKYAYASAAPDOEVLVRPSLIQOEAARAADAEVPGYVQG-YLTKVGERPHRVLGGPGVRTRGSNLQOPRARESNIRIYSESAPSHLSKEDIRRHRLLADSEVASILPI-SKSGTRLLVLEGGF VKPKRRKKYAYASAAPGOEHLVGPSLQPGEAARAADAEGYAYAGGANLVKIGERPHRLURGGPGVRGGRSDFQLPKSRESNIRIYSESAPSHLSKEDIRRHRLLADSAVAGLRPVSSRSGARLLVLEGGAP VKPKRRKKYAYASLDPGGEALVGPSLQPEAARAADAEVPGYVGGANLAKVGERPHRLIRGGPGRGGRSDFQLPKTRESNIRIYSESAPSHLSKEDIRRHRLLADGAVAGUPVSKSRSGARLLVLEGGAP VKPKRRKKYANISLQPGQEALVGPSLQPEAARAADAEVPGYVGGANLAKVGERPHRLIRGGPGRGGRSDFQLPKTRESNIRIYSESAPSHLSKEDIRHRLADGAVAGUPVSKSRSGARLLVLEGGAP VKPKRRKKYANISLQPGQEALVGPSLQPEAARAADAEVPGYVGGANLAKVGERPHRLIRGGPGRGGRSDFQLPKTRESNIRIYSESAPSHLSKEDIGHQLADGAVASVQPVSKSRGARLLVLEGAAP VKPKRRKKYALALSLQPGQEALVGPSLQPEAARAADAEVPGYVGAVALAUGANLAUGA VKPKRKKKHISLGQEALVGGANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA													
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
Nouse Hunan Horse Opossun Chicken	GAVLE GAEPO NIMPS		LKOPLDHSEVE LKOPLDHSEVE LKOPLDHSEVE	FAFHLDRILGI FAFHLDRILGI FAFHLDRILGI	LNRTLPSVSR LNRTLPSVSR LNRTLPSVSR	KAEFIQDGRPO KSEFIQDGRPO KSEFIQDGHPO	CPIILNDASL CPVILNDSSL CPVILNDSSL	ASASNDSHSS SSASNDTHSS SPTSNETHSS APTDNESHSS SPTDNNTHSS	KL THGTYQQI IKL THGTYQQI IPL THGAYQQI	LLKQKCHQNG Llkqkchqng Llkqkchqng	RVPKPESGCTE RVPKPENGCTE RAPKAENGCTE	IHHHENSKMA IHHHENSKMA VHHHENSKMA	LFDFLLQIYN LFDFLLQIYN LFDFLLQIYN	RLDTNC RLDSNC RLDVNC
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
Mouse Hunan Horse Opossun Chicken		RKEDACVQ RKEDACVQ RKEDACQL	NGLRPKCDDQU NGLRPKCDNQU KgyrrkcDnpu	GSAALAHIIQA DAVALAHIIQA DTYELTHIYQA	RKHDPRHLVF RKHDPRHLVF RKHDPRHLVF	IDNKGFFDRSI IDNKGFFDRSI IDNKGFFDRSI	EDNLNFKLLE Ednlnfklle Ednlnfklle	GIREFPESAVS GIREFPASAVS GIREFPESAVS GIREFPESAVS GINEFPESAVS	SVLKSQHLRQI Svlksqhlrqi Silkshhlrei	KLLQSLFLDK KLLQSLFLDK KLLQSLFLDK	/YHESQGGROC /YHESQGGROC /YHESQGGROC	GIEKLIDVIE GIEKLIDVIE GIEKLIDVIE	IRAKILITYIN IRAKILLTYIN IRAKILLTYIN	HGYKY HGAKY
House Hunan Horse Opossu n Chicken	S25													
	1	10	20	30	40	50	60	70	80	90	100	110	120	13
House Xenopus	VEPAQL	QQLLSLCR						ACAIYLGFLV Asaiygivia						
	131	140	150	160	170	180	190	200	210	220	230	240	250	260
House Xenopus	LQPNYYYITLRSKRSKPANIRGTYKPKRRKKYAVASAAPDQEVLVRPSLIQQEAARAADAEVPGYYQGYLTKYGERPHRYLRGPGYRTRGSNLQQPRARESNIRIYSESAPSHLSKEDIRRMRLLADSE LQPNY-YITLKTKRSKPANIRGTYRPKKRRKYGARRPGYYQDTESKKDTLHSKYPNSQHKSQAQSHIRGIDGHRGGRGTHQSNIRIYSDSAPPHFTKEDISAMRFLSDSR													
	261	270	280	290	300	310	320	330	340	350	360	370	380	390
	ASILPISKSGTRLLYLEGSTSGSVPGCGPSPCGLLKQPLDHSEVFAFHLDRILGLNRTLPSVSRKLEFIQDGRPRPIILHDSSLASASNDSHSSVKITHGTYQRLLKQKCHLNGRYPRPEHDCTE GHIKQNLLLFESDQTPLHKHPVPPVGSGDCQGQCGVIKRPLDHSEVFAFHLDRYLGLNRTLPSVSRSLEFVQDGQPCPVILHDPSLLPTDNKTQSSIKLKHGTYQEHLRHKCHLNGKAPKADLGCTE													
	391	400	410	420	430	440	450	460	470	480	490	500	510	520
House Xenopus	I													
	521	530	540	550										
House Xenopus	EKLID	IERRARIL	ITYINAHGAR	VLPHNE										

Supplementary Fig. S1. Ened sequence comparison and analysis. Mouse Ened nucleotide sequence and the partially sequenced mouse Ened orthologue of Xenopus laevis was translated to amino acid sequence with the Transeq software (http://www.ebi.ac.uk/emboss/transeq/). Identical residues are depicted in red and biochemical similarities are depicted in blue. (A) Multiple alignment of Ened amino acid sequence with predicted amino acid sequences for mouse, human, horse, opossum and chicken using MultAlin software (http://bioinfo.genopole-toulouse.prd.fr/multalin). The transmembrane amino acid sequence at the N-terminal was predicted using TMpred software (http://www.ch.embnet.org), and is marked with an open box. (B) Alignment of mouse Ened with the orthologous Xenopus laevis Ened amino acid sequence showed stretches of identical sequence regions between the two species. (GenBank Accession Nos. Mouse: EU797522; Xenopus laevis: EU746496; Human: NP001026870.1; Horse: XP001500550; Opossum: XP001366268.1; Chicken XP420382.2).

Related, previously published Int. J. Dev. Biol. articles

See our recent Special Issue *Fertilization*, in honor of David L. Garbers and edited by Paul M. Wassarman and Victor D. Vacquier at: http://www.ijdb.ehu.es/web/contents.php?vol=52&issue=5-6

See our recent Special Issue *Ear Development* edited by Fernando Giraldez and Bernd Fritzsch at: http://www.ijdb.ehu.es/web/contents.php?vol=51&issue=6-7

Mechanical control of tissue morphogenesis during embryological development Donald E. Ingber

Int. J. Dev. Biol. (2006) 50: 255-266

Fibroblast growth factor signalling and regional specification of the pharyngeal ectoderm Nina Trokovic, Ras Trokovic and Juha Partanen Int. J. Dev. Biol. (2005) 49: 797-805

Neural crest derivatives in ocular and periocular structures Sophie Creuzet, Christine Vincent and Gérard Couly Int. J. Dev. Biol. (2005) 49: 161-171

Migration of neural crest-derived enteric nervous system precursor cells to and within the gastrointestinal tract Alan J. Burns Int. J. Dev. Biol. (2005) 49: 143-150

Pathways regulating lens induction in the mouse Richard A. Lang Int. J. Dev. Biol. (2004) 48: 783-791

Ocular surface epithelial and stem cell development J. Mario Wolosin, Murat T. Budak and M.A. Murat Akinci Int. J. Dev. Biol. (2004) 48: 981-991

Targeted disruption of fibroblast growth factor receptor-1 blocks maturation of visceral endoderm and cavitation in mouse embryoid bodies.

Milan Esner, Jiri Pachernik, Ales Hampl and Petr Dvorak Int. J. Dev. Biol. (2002) 46: 817-825

FGF signaling is essential for the early events in the development of the chick nervous system and mesoderm. S Khot and S Ghaskadbi

Int. J. Dev. Biol. (2001) 45: 877-885

Time-lapse observation of branching morphogenesis of the lung bud epithelium in mesenchyme-free culture and its relationship with the localization of actin filaments.

T Miura and K Shiota Int. J. Dev. Biol. (2000) 44: 899-902

Regulation of neural crest cell populations: occurrence, distribution and underlying mechanisms. J L Vaglia and B K Hall Int. J. Dev. Biol. (1999) 43: 95-110

Laminin fragment E4 inhibition studies: basement membrane assembly and embryonic lung epithelial cell polarization requires laminin polymerization. L Schuger, P Yurchenco, N K Relan and Y Yang Int. J. Dev. Biol. (1998) 42: 217-220

Targeted over-expression of FGF in chick embryos induces formation of ectopic neural cells.

L Rodríguez-Gallardo, V Climent, V Garciá-Martínez, G C Schoenwolf and I S Alvarez Int. J. Dev. Biol. (1997) 41: 715-723 2006 ISI **Impact Factor = 3.577**

