doi: 10.1387/ijdb.130193jg

SUPPLEMENTARY MATERIAL

corresponding to:

Pitx3 directly regulates Foxe3 during early lens development

NAFEES AHMAD, MUHAMMAD ASLAM, DORIS MUENSTER, MARION HORSCH, MUHAMMAD A. KHAN, PETER CARLSSON, JOHANNES BECKERS and JOCHEN GRAW

Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.130193jg

^{*}Address correspondence to: Jochen Graw. Helmholtz Centre Munich – German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany. Tel: +49-89/3187-2610. E-mail: graw@helmholtz-muenchen.de

TABLE S1

PROBES FOR EMSA

Gene	Probe	Sequence*
Foxe3	Fox3-1-EMSA Fox3-2-EMSA	5'-Biotin-AATCCCTGGCCAT <u>TAATCC</u> CTCCTGCCAGCCC-3' 5'-Biotin-ACGCTGAAAACGC <u>GGATTA</u> GCCCTTGGGCCGC-3'
Prox1	Prox1-EMSA	5'-Biotin-AGGGGGGGGCAGTT <u>TAATCC</u> TGTTAAATGTGGT-3'
Tube1	Tube1-3-1-EMSA Tube1-3-2-EMSA	5'-Biotin-GACAAGCTGCTAA <u>TAAGCT</u> GTTTCTGCCATCT-3' 5'-Biotin-TGTAATAACAAAC <u>TAAGCT</u> GTATCCTGGCGGC-3'

*Pitx3 putative binding sites are underlined.

TABLE S2

PRIMERS FOR GENOTYPING OF APHAKIA MICE

			Product size (bp)	
Primer	Sequence	Annealing (°C)	wt	ak
Pitx3-1/2NF	5'-ATTCGGTGCGGAGAGTAAGG-3'	63	1,165	399
Pitx3-2R	5'-ATTGGATTTGGCTCTGATGGTT-3'			

TABLE S3

PRIMERS FOR RT-QPCR

Gene	Primer	Sequence	Annealing (°C)	Product size (bp)
E4f1	E4FqF E4FqR	5'-AGTACATTATTGAGGCCACTGC-3' 5'-CAATGGTGATCGTGTCTGC-3'	60	219
Foxe3	Foxe3-lt Foxe3-rt	5'-GCCGCCCTACTCATACATC-3' 5'-ACAGTCGTTGAGGGTGAGG-3'	60	172
Prox1	Prox1qF Prox1qR	5'-ATGCTGTGTCTCCTGTTTCTCT-3' 5'-GCTTATCAGGCTCAAATCAAAC-3'	60	101
Tuba*	TubeaF TubeaR	5'-CCAGATGCCAAGTGACAAGA-3' 5'-GTGGGTTCCAGGTCTACGAA-3'	60	117
Tube1	Tube1-mqF Tube1-mqR	5'-CAGTGCTTCTTCATCATCCA-3' 5'-GGAAGGATAAACCGCTGTC-3'	60	126

*: Primers from qprimerDepot (http://mouseprimerdepot.nci.nih.gov/)

TABLE S4

PRIMERS FOR CLONING OF FOXE3 PROMOTER AND CHIP-PCR

Primer	Sequence	Annealing temperature (°C)	Product size (bp)
Foxe3ch-1F Foxe3ch-1R	5'-CAGAGTGGAGCAAGCTGGTG-3' 5'-TAAGACGGCCAGTGAAGGTG-3'	58	162
Foxe3ch-2F Foxe3ch-2R	5'-TAAGACGGCCAGTGAAGGTG-3' 5'-CTTTGGACAAGGGTGGGAAT-3'	58	283
Foxe3ch-1F Foxe3ch-2R	5'- CAGAGTGGAGCAAGCTGGTG-3' 5'-CTTTGGACAAGGGTGGGAAT-3'	58	401

TABLE S5

PRIMERS FOR SITE DIRECTED MUTAGENESIS

Primer	Sequence
Prox1-mut	GTAAAAATAAAGGGGGGGGCAGTTTGTTAAATGTGGTGCG
Foxe3-mut1	CAATCCCTGGCCATCTCCTGCCAGCC
Foxe3-mut2	CGCTGAAAACGCGCCCTTGGGCCG

Supplementary Fig. S1. Analysis of Pitx3 and Prox1 expression in *Foxe3* mutant. Immunofluoresence staining for Pitx3 (a) and Prox1 (b) was performed on sections from Foxe3 mutant embryos at E11.5. Co-staining for both of these genes revealed that their expression completely overlap in this mutant (c); however, the expression of Prox1 is observed more anterior compared to the wild-type lens (Fig. 2o) at this stage, indicating that Foxe3 inhibits Prox1. Immunofluoresence staining was performed on 8 μm thick, PFA fixed paraffin sections. Scale bars, 50 μm.

Supplementary Fig. S2. RT-qPCR was performed at E11.5 for *E4f1* (A) and at E12.5 for *Tube1* (B) using RNA from the head of littermate embryos. Expression is shown as fold changes of values normalized to Tuba and calculated using $2^{\Delta\Delta CT}$ method. Values from wild-type samples are represented as one. Data represents mean \pm standard deviations from three samples run in duplicate. Statistical analysis was done using student's t test. $p \le 0.05$.

Supplementary Fig. S3. Quantification of *Foxe3* and *Prox1* transcripts at different developmental stages (adopted from Lang, 2004 and http:// www.mc.vanderbilt.edu/) using RNA from the head of littermate embryos. *Expression is represented as fold changes normalized to Tuba and calculated using* $2^{-\Delta LCT}$ method. Values from wild-type samples are represented as one. Data represents means \pm standard deviations from five samples run in duplicate. Statistical analysis was done using student's t test. p = < 0.05. Abbreviations: LV for, lens vesicle formation; LV sep, lens vesicle separation; FC elong, fiber cell elongation.